Практическая работа №2 Тема: Изучение строения головного мозга.


Строение и функции головного мозга

Название

отдела

Структуры отдела

и строение

Функции
Продолговатый мозг
Мост
Мозжечок
Средний мозг
Промежуточный мозг Таламус
Гипоталамус
Конечный мозг:

большие

полушария

Задание 2

. Используя словарь по теме «Локальные системы мозга и их функциональная организация», заполните таблицу:

Таблица 2.

Локальные системы мозга и их функциональная организация

Доли коры больших полушарий головного мозга Функциональные зоны коры (сенсорные, моторные, ассоциативные) Характерные нарушения при поражении

данной доли мозга

Затылочная доля
Височная доля
Теменная доля
Лобная доля

Интересные факты о мозге

Мозг как субстрат психических процессов представляет собой единую суперсистему, единое целое, состоящее, однако из дифференцированных отделов (участков или зон), которые выполняют различную роль в реализации психических функций.

Невозможно интересное видео от самого Сергея Вячеславовича Савельева

Тайна двух полушарий Человеческого Мозга

Три функциональных блока мозга по А.Р. Лурия

Можно выделить 3 основных функциональных блока, или три основных аппарата мозга, участие которых необходимо для осуществления речевой деятельности. I блок регуляции тонуса и бодрствования (уровень непроизвольной саморегуляции и самоорганизации)


Анатомия:

Системы, обеспечивающие и регулирующие тонус коры, находятся в стволовых и подкорковых отделах мозга: — ретикулярная формация ствола мозга; — неспецифические структуры среднего мозга, его диэнцефальных отделов; — лимбическая система; — медиобазальные отделы коры лобных и височных долей мозга; — стриопаллидарная система.
Функции:
Для того, чтобы обеспечивалось полноценное протекание речевых процессов, человек должен находиться в состоянии бодрствования. Только в оптимальных условиях бодрствования человек может принимать и перерабатывать информацию, вызывать в памяти нужные избирательные системы связей, программировать свою деятельность и осуществлять контроль за протеканием своих психических процессов, корригируя ошибки и сохраняя направленность своей деятельности.
Системы I блока мозга находятся в двойных отношениях с корой, тонизируя ее и в то же время испытывая ее регулирующее влияние в соответствии с поставленными перед организмами задачами.
Эти системы построены по типу неспецифической нервной сети, которая осуществляет свою функцию путем постепенного, градуального изменения состояний и не имеет непосредственного отношения ни к приему и переработке поступающей извне информации, ни к выработке намерений, планов и программ поведения. Значительная часть активности человека обусловлена намерениями и планами, перспективами и программами, которые формируются в процессе его сознательной жизни, являются социальными по своему заказу и осуществляются при ближайшем участии сначала внешней и потом его внутренней речи. Всякий сформулированный в речи замысел преследует некоторую цель и вызывает целую программу действий, направленных на достижение этой цели. Осуществление замысла или достижение цели требует определенной энергии и может быть обеспечено лишь при наличии некоторого уровня активности. В 1949 году Мэгун и Моруцци обнаружили, что в стволовых отделах головного мозга находится особое нервное образование, которое приспособлено к тому, чтобы осуществлять роль механизма, регулирующего состояния мозговой коры, т.е. способно изменять ее тонус и обеспечивать ее бодрствование. Это образование построено по типу нервной сети, в которую вкраплены тела нервных клеток, соединяющиеся друг с другом короткими отростками. По сети этого образования, названного
ретикулярной формацией
, возбуждение распространяется не отдельными, изолированными импульсами, а градуально, постепенно меняя свой уровень и, таким образом, модулируя состояние всего нервного аппарата. В настоящее время общепризнанной стала точка зрения о важной и специфической роли не только корковых, но и подкорковых структур в психической деятельности при ведущем участии коры больших полушарий. II блок приема, переработки и хранения информации (операциональный)
Анатомия:
— зрительная область (затылочная — на рисунке ниже обозначена синим цветом); — слуховая область (височная — на рисунке ниже обозначена желтым цветом); — общечувствительная область (теменная — на рисунке ниже обозначена зеленым цветом).

Функции:

По своим функциональным особенностям системы этого блока приспособлены к приему экстероцептивных раздражений, приходящих в головной мозг от периферических рецепторов, к дроблению их на огромное число компонентов (т.е. к анализу их на мельчайшие составляющие детали) и к комбинированию их в нужные динамические функциональные структуры (т.е. к синтезу их в целые функциональные системы). Этот функциональный блок головного мозга обладает высокой модальной специфичностью. Системы этого блока имеют иерархическое строение, распадаясь на первичные (проекционные) зоны, которые принимают информацию и дробят ее на мельчайшие составные части, вторичные (проекционно-ассоциативные) зоны, которые обеспечивают кодирование (синтез) этих составных частей и превращают соматотопическую проекцию в функциональную организацию, и третичные зоны (зоны перекрытия), обеспечивающие совместную работу различных анализаторов и выработку надмодальных (символических) схем, лежащих в основе комплексных форм познавательной деятельности. Теменная область обеспечивает работу кожно-кинеститеческого анализатора, который связан с различными видами кожной чувствительности, осязанием, мышечно-суставным чувством, и выступает базисом в формировании схемы собственного тела, артикуляции, тонких предметных движений. Также отвечает за пространственную ориентацию. Старый отдел (задняя центральная извилина) является центром чувствительных проекций тела. Новый отдел включает в себя центры, ведающие сложными видами глубинной чувствительности (мышечно-суставной, двухмерно-пространственным чувством, чувством веса и объема движения, чувством распознавания предметов наощупь. Более новый отдел — содержит в себе центры праксиса. Праксис — ставшие автоматизированными в процессе повторений и упражнений целенаправленные движения, которые вырабатываются в ходе обучения и постоянной практики в течение индивидуальной жизни (ходьба, еда, одевание, механические элементы письма, различные виды трудовой деятельности). От рождения до 20 лет нейроны этой области претерпевают значительные изменения: увеличиваются их размеры, особенно в первые сем лет, меняются форма, характер ветвления. Первый год жизни рассматривается как оптимальный возраст для формирования сенсорной базы последующего развития. В этот период осуществляется развитие моторных и кинестетических зон, а также формируется их связь со зрительно-осязательными процессами. Затылочная область обеспечивает работу центрального звена зрительного анализатора. Отвечает за переработку зрительной информации, организацию сложных процессов зрительного восприятия. Развитие нервных структур периферического и центрального звена зрительного анализатора начинается еще во внутриутробном развитии. Ширина коры в затылочной области изменяется от рождения до 20 лет, но наиболее сильный ее рост происходит в течение первого года жизни. Соответствующий взрослому состоянию размер, в зависимости от типа нейронов, достигается к 8-12 и 13-16 годам. Височная область связана с работой слухового анализатора. Функции: восприятие слуховых, вкусовых, обонятельных ощущений; анализ и синтез речевых звуков; механизмы памяти. После рождения наиболее важным этапом является возраст 2 лет, когда височная область ребенка начинает приближаться к величине височной области взрослого человека. После 2 лет наблюдается некоторое замедление в процессе роста и развития клеток коры, ширины коры. К 7 годам величина поверхности коры височной области ребенка почти соответствует размерам коры взрослого человека. В задних отделах больших полушарий, на стыке височной, теменной и затылочной областей, находится зона TPO, являющаяся зоной «перекрытия», взаимодействия разных анализаторных систем, и обеспечивает сложные, надмодальные интегративные функции. Здесь наиболее поздно наступает полная дифференцировка коры и происходят наиболее значительные морфологические перестройки, связанные с несинхронным развитием слоев, подслоев и цитоархитектоники в различных полях. В первые два года жизни ширина полей увеличивается в 2 раза и к 7 годам ширина полей увеличивается в 3 раза. От 8 до 12 лет рост коры в ширину в левом полушарии более интенсивен, чем в правом. III блок программирования, регуляции и контроля сложных форм деятельности (уровень произвольной саморегуляции и самоорганизации)
Анатомия:
Префронтальные отделы мозга (на рисунках выше обозначена оранжевым цветом): передние отделы больших полушарий, спереди от передней центральной извилины. Занимают 25-28 % коры, масса = 450 г.
Функции:
Организация произвольных движений; организация двигательных механизмов речи; регуляция сложных форм поведения; регуляция процессов памяти. Человек формирует планы и программы своих действий, следит за их выполнением и регулирует свое поведение, приводя его в соответствии с этими планами и программами; наконец, он контролирует свою сознательную деятельность, сличая эффект своих действий с исходными намерениями. «Выходными воротами» этого блока является двигательная зона коры (4-е поле Бродмана), Vслой которой содержит гигантские пирамидные клетки Беца, волокна от которых идут к двигательным ядрам спинного мозга, а оттуда к мышцам, составляя часть большого пирамидного пути. Эта зона коры топографически построена так, что ее верхние отделы являются источником волокон, идущих к нижним конечностям противоположной стороны, средние — к верхним конечностям противоположной стороны, а нижние — волокон, направляющихся к мышцам лица, губ и языка. В значительной степени в этой зоне представлены органы, имеющие наибольшее функциональное значение и нуждающиеся в наиболее тонкой регуляции. Наиболее существенной частью являются префронтальные отделы мозга, которые вследствие отсутствия в их составе пирамидных клеток и наличия большого числа мелких клеток (гранул) иногда называют гранулярной лобной корой. Именно эти разделы мозга играют решающую роль в формировании намерений и программ, в регуляции и контроле наиболее сложных форм поведения человека. Префронтальная область мозга имеет богатейшую систему связей как с нижележащими отделами мозга и соответствующими отделами ретикулярной формации, так и практически со всеми остальными конвекситальными отделами коры.
Лобные доли мозга обладают мощными пучками восходящих и нисходящих связей с ретикулярной формацией. Эти области новой коры получают импульсы от систем первого функционального блока, «заряжаясь» от него, в то же время они оказывают интенсивное модулирующее влияние на образования ретикулярной формации, придавая ее активирующим импульсам дифференцированный характер и приводя их в соответствие с теми динамическими схемами поведения, которые формируются непосредственно в лобной коре мозга. Отличительная черта процессов регуляции сознательной деятельности у человека заключается в том, что эта регуляция совершается у него при ближайшем участии речи, поскольку многие высшие психические процессы формируются и протекают на основе речевой деятельности, которая на ранних ступенях развития носит развернутый характер, а затем все более сокращается.
Значимые этапы микроструктурных изменений ансамблевой организации префронтальных отделов лобной области приходятся на 1 год, 3 года, 5-6 лет, 9-10 лет, 12-14 лет, 18-20 лет. Ряд авторов на основе сопоставления данных об увеличении веса мозга, размеров черепа и изменений нервной активности выявили отдельные периоды ускоренного развития лобных долей мозга. В возрасте 3-4 месяцев наблюдается первый такой отрезок, в это время ребенок начинает дотягиваться до окружающих его предметов. Следующее ускорение возникает примерно в 8 месяцев, когда ребенок начинает ползать и искать спрятанные предметы, затем в 12 месяцев, когда наблюдается значительное улучшение в поиске предметов. Промежуток между 1,5 и 2 годами коррелирует с бурным развитием речи. Период между 3 и 6 годами сопровождается последовательным вовлечением речи в качестве средства планирования действий. Последующие периоды активности лобных долей мозга в 9, 12, 15 и 18-20 лет связывают с разными фазами совершенствования мышления.

Основные проводящие пути ствола головного и спинного мозга

В белом веществе ствола головного мозга и спинном мозге располагаются проводники восходящего и нисходящего направлений. Нисходящие пути проводят к рефлекторным аппаратам спинного мозга двигательные импульсы из коры головного мозга (корково-спинальный, пирамидный путь), а также импульсы, способствующие осуществлению двигательного акта (экстрапирамидные пути) из различных отделов подкорковых образований и ствола головного мозга. Нисходящие двигательные проводники заканчиваются на периферических мотонейронах спинного мозга посегментно. Вышележащие отделы центральной нервной системы оказывают существенное влияние на рефлекторную деятельность спинного мозга. Они затормаживают рефлекторные механизмы собственного аппарата спинного мозга. Так, при патологическом выключении пирамидных путей собственные рефлекторные механизмы спинного мозга растормаживаются. При этом усиливаются рефлексы спинного мозга и тонус мышц. Кроме того, выявляются защитные рефлексы и такие, которые в норе наблюдаются только у новорожденных и детей первых месяцев жизни. Восходящие пути передают из спинного мозга чувствительные импульсы с периферии (с кожи, слизистых оболочек, мышц, суставов…) к вышележащим отделам головного мозга. В конце концов эти импульсы достигают коры головного мозга. С периферии импульсы приходя в кору головного мозга двумя путями: по так называемым специфическим системам проводников (через восходящий проводник и зрительный бугор) и по неспецифической системе — через ретикулярную формацию ствола головного мозга. Все чувствительные проводники отдают коллатерали ретикулярной формации.

Межполушарные связи

Все психические функции актуализируются благодаря функциональному взаимодействию правого и левого полушария мозга, в ходе которого каждое вносит свой специфический вклад, «индивидуальный талант» в протекание любого этапа, уровня, формы, модальной и семантической организации и т.д. Формирование межполушарного взаимодействия в онтогенезе человека содержит ряд ступеней, эволюционное содержание которых состоит в поэтапном включении — с последующей ассимиляцией — комиссуральных структур разного уровня и филогенетической зрелости в обеспечение целостной психической деятельности. На первом этапе (от внутриутробного периода до 2-3 лет основополагающими являются транскортикальные связи стволового уровня, мозговые спайки гипоталамо-диэнцефальной области и базальных ядер. Здесь, в рамках 1-го функционального блока мозга, закладывается базис для межполушарного обеспечения нейрофизиологических, нейрогуморальных и нейрохимических асимметрий, лежащих в основе соматического, аффективного и когнитивного статусов ребенка. Второй этап — возрастной период от 3 до 7-8 лет — характеризуется выступающей на первый план активизацией межгиппокампальных комиссуральных систем. Благодаря прогрессирующим афферентным и эфферентным ипси- и контралатеральным проекциям, а также интимным связям со спаечными образованиями свода и прозрачной перегородки; будучи важнейшим образованием лимбической системы, межгиппокампальный комплекс начинает играть ведущую роль в организации межполушарного обеспечения полисенсорной, межмодальной когнитивной и/или эмоционально-мотивационной интеграции. Завершающим в становлении межполушарных взаимодействий ребенка является этап приоритетного значения комплекса транскаллозальных связей, продолжающийся от 7 до 12-15 лет. Нейрофизиологически это подкрепляется формированием «вольны Уолтера» — центрального механизма произвольного внимания. Прежде мозолистое тело — это главная для человека мозговая комиссура была включена в актуализацию межгемисферного обмена преимущественно между гомотопическими областями задних отделов правого и левого полушарий, наращивая свою контролирующую функцию по отношению к нижележащим комиссуральным уровням. Теперь картина качественно меняется.

Основные векторы кортикализации психических функций

Рис.: Формирование мозговой организации психических процессов в онтогенезе

Формирование мозговой организации психических процессов в онтогенезе происходит от стволовых и подкорковых образований к коре головного мозга (снизу вверх), от правого полушария мозга к левому (справа налево), от задних отделов мозга к передним (сзади наперед). Апофеозом церебрального функционального онтогенеза являются нисходящие контролирующие и регулирующие влияния от передних (лобных) отделов левого полушария к субкортикальным. Но, к сожалению, все эти процессы станут попросту невозможными или искаженными, если не будет нейробиологической предуготованности мозговых систем и подсистем, которые их обеспечивают. Иными словами, развитие тех или иных аспектов психики ребенка однозначно зависит от того, достаточно ли зрел и полноценен соответствующий мозговой субстрат. Следовательно, для каждого этапа психического развития ребенка в первую очередь необходима потенциальная готовность комплекса определенных мозговых образований к его обеспечению. Но, с другой стороны, должна быть востребованность извне (от внешнего мира, от социума) к постоянному наращиванию зрелости и силы того или иного психологического фактора. Если таковая отсутствует — наблюдаются искажение и торможение психогенеза в разных вариантах, влекущие за собой вторичные функциональные деформации на уровне мозга. Более того, доказано, что на ранних этапах онтогенеза социальная депривация приводит к дистрофии мозга на нейронном уровне.

До того, как вы появились на свет, мозг создает нейронную карту всех частей тела. Если бы вы могли использовать заряды своего мозга, их бы хватило, чтобы зажечь электрическую лампочку в 10 ватт. Прикасаясь к чему-то, мы посылаем в мозг импульсы, идущие со скоростью 200 километров в час. Подсчитано, что в течение дня человеческий мозг порождает примерно 70 000 мыслей. Вес мозга составляет только 2% от веса вашего тела, однако 20% крови, проходящей через сердце, несет питательные вещества именно к мозгу. Роберт Фрост: Мозг — удивительный орган. Он начинает работать, как только вы просыпаетесь утром и не прекращает до тех пор, пока вы не приходите на службу. В 7 лет ваш мозг достигает своего почти стопроцентного размера. Поначалу мозг каждого человека формируется как женский. Известно, что типичный мужской мозг отличается по биохимическому составу от типичного женского. Бомбардировка мозга эмбриона тестостероном маскулинизирует организм. Если тестостерона на ранних стадиях недостаточно, маскулинизации не происходит. Центральная нервная система отбрасывает 99% информации, которую регистрируют ваши чувства, чтобы не беспокоить мозг несущественными деталями. Мозговые волны имеют отношение к вашей привлекательности. Если эти волны каким-то образом совпадают с волнами возможного партнера, то контакт налаживается мгновенно. По крайней мере, так считают некоторые специалисты, работающие с энцефалографом. Они стремятся понять, возможно ли найти подходящую пару на основе анализов энцефалограмм. Мозг использует в 10 раз больше кислорода, чем все остальные части тела, вместе взятые. Существует устойчивое мнение, что человеческий мозг использует примерно 15% своих возможностей. Каждый день вы используете для работы 7 миллионов клеток мозга. Для простого распознавания геометрической формы — круга, квадрата или треугольника — ваш мозг задействует около 25 миллионов нервных клеток. Достаточно понимать лишь 70% того, что вы слышите, — недостающее дополнит мозг. В течение человеческой жизни клетки мозга постепенно исчезают. Однако мозг умеет хорошо приспосабливаться. Такая пластичность помогает ему справляться с потерей клеток. Мозг может компенсировать старение или даже травму, изменяя собственную структуру. Обычно в таких случаях меняются количество и эффективность связей между нейронами. Ваш мозг постоянно отделяет истинную информацию от ложной. Тесты памяти показывают, что люди легко вспоминают то, что считают правдой, и чаще забывают то, что кажется им ложью. Возможно, человеческий мозг содержит более чем 1014 синапсов. В нашем организме попросту недостаточно генов, чтобы соответствовать такой сложности. Исследователи определили, как внегенетические факторы (включая нейронную активность, контакт с другими клетками, радиацию и химические воздействия) влияют на работу мозга, особенно в то время, когда он растет и развивается. Прибегнув к компьютерной терминологии, можно сказать, что наш мозг постоянно перепрограммирует себя в ответ на внешние и внутренние воздействия. Четвертая часть человеческого мозга связана с функцией зрения.
Источники: Семенович А.В. Введение в нейропсихологию детского возраста. Учебное пособие. — М., 2005. Лурия А.Р. Основы нейропсихологии. Учеб. пособие для студ. высш. учеб. заведений. — М., 2003. Хомская Е.Д. Нейропсихология: Учебник для вузов. 4-е изд. — СПб., 2010. Бадалян Л.О. Невропатология: учебник для студ. высш. учеб. заведений — М., 2007. Микадзе Ю.В. Нейропсихология детского возраста. Учебное пособие. — СПб., 2008. Ротенберг Р. Расти здоровым: Детская энциклопедия здоровья. — М., 1992. Джуан Ст. Странности нашего мозга. — М., 2009.

Головной мозг, его строение и функции Строение мозга

Спинной мозг

, находящийся в позвоночном столбе, регулирует простейшие автоматизированные мышечно-двигательные реакции, он переходит в продолговатый отдел головного мозга.

Головной мозг

– передний отдел центральной нервной системы позвоночных, расположенный в полости черепа; главный регулятор всех жизненных функций организма и материальный субстрат его высшей нервной деятельности. Наиболее высоко головной мозг развит у человека за счет увеличения массы и усложнения строения коры больших полушарий.

Этапы формирования мозга

ГМ начинает формироваться в период эмбрионального развития, который приходится на 27-й день беременности. Краткое описание процесса: предварительно образуются передняя, средняя и задняя трубки церебральных везикул, а затем создаются лобная и затылочная области.

На 5-й недели беременности формируются вторичные везикулы, из чего и состоит мозг человека. Фронтальная часть делится на конечную и промежуточную, а задняя является мозжечком. За образование цереброспинальной жидкости отвечают камеры.

Если сравнивать параметры ГМ у полов, то женский мозг может составить на 100 г меньше мужского. Чтобы понять его расположение в голове, в учебнике по биологии предоставляется схема разреза ГМ. Сам мозг находится в черепе и защищен от повреждений цереброспинальной жидкостью.

Строение мозга считается сложным. Орган состоит из следующие элементов:

  • коры, которая составляет 2 полушария с разными функциями;
  • серого и белого вещества.

К функциям правого полушария относятся: выражение эмоций, восприятие цветов, фото и музыки, чувствительность. При столкновении с проблемой у человека начинает работать правое полушарие. Левая часть мозга считается научной и отвечает за аналитическое, логическое мышление, интеллект.

Функции веществ ГМ

Название веществаФункции
СероеУчаствует на поверхности органа в производстве коры.
БелоеВ его состав входят аксоны и миелоновые оболочки. Оно расположено под серым веществом. Его связки, которые проходят через нервную систему, обобщают в нервные тракты (передают сигналы иным структурам ЦНС).

Головной мозг покрыт 3 оболочками: твердой, паутинной и мягкой. В их состав входят соединительные ткани. Оболочки защищают ЦНС, кровеносные сосуды (КС). Одновременно они собирают цереброспинальную жидкость. Ее объем составляет 160 мл. По составу она похожа на плазму и содержит:

  • ионы хлорида и натрия;
  • белки.

Сам мозг состоит из нервных и глиальных клеток. Первые встречаются разных форм и размеров, но они состоят из аксона, дендритов и тела. Передача информации от нейронов осуществляется через химические и электрические сигналы. В процессе возбуждения нервные клетки передают друг другу энергию за счет синапса (пространство между нейронами).

Сбор информации осуществляется дендритами. Сигналы поступают в тело, которое определяет степень их важности и необходимость в последующей передаче. Если информация важная, она поступает к аксону, а затем в синапс. Он пересекается биологическими медиаторами, которые стимулируют нервные клетки передавать информацию.

Чтобы процесс функционировал нормально, нейроны нуждаются в защите, питании. Подобными функциями наделены глиальные клетки. Их количество в несколько раз превышает число нейронов.

Функции большого (конечного) мозга

Благодаря работе головного мозга, человек может мыслить, чувствовать, слышать, видеть, осязать, двигаться. Большой (конечный) мозг управляет всеми жизненно важными процессами, происходящими в организме человека, а также является «вместилищем» всех наших интеллектуальных способностей. Из мира животных человека, прежде всего, выделяет развитая речь и способность к абстрактному мышлению, т.е. способность мыслить нравственными или логическими категориями. Только в человеческом сознании могут возникнуть различные идеи, например, политические, философские, теологические, художественные, технические, творческие.

Кроме того, головной мозг регулирует и координирует работу всех мышц человека (и тех, которыми человек может управлять усилиями воли, и тех, которые не зависят от воли человека, например, сердечная мышца). Мышцы получают из центральной нервной системы серию импульсов, на что мышцы отвечают сокращением определенной силы и длительности. Импульсы поступают в мозг из различных органов чувств, вызывая необходимые реакции, например, поворот головы в ту сторону, откуда слышится шум.

Левое мозговое полушарие управляет правой половиной тела, а правое — левой. Два полушария дополняют друг друга.

Головной мозг напоминает грецкий орех, в нем выделяют три больших отдела — ствол, подкорковый отдел и кору больших полушарий. Общая поверхность коры увеличивается за счет многочисленных борозд, которые делят всю поверхность полушария на выпуклые извилины и доли. Три главные борозды — центральная, боковая и теменно-затылочная — делят каждое полушарие на четыре доли: лобную, теменную, затылочную и височную. Отдельные области коры головного мозга имеют разное функциональное значение. В кору больших полушарий поступают импульсы от рецепторных образований. Каждому периферическому рецепторному аппарату в коре соответствует область, называемая корковым ядром анализатора. Анализатор — это анатомо-физиологическое образование, обеспечивающее восприятие и анализ информации о явлениях, происходящих в окружающей среде и (или) внутри организма человека, и формирующее специфические для определенного анализатора ощущения (например, болевой, зрительный, слуховой анализатор). Области коры, где находятся корковые ядра анализаторов, называются сенсорными зонами коры больших полушарий. С сенсорными зонами взаимодействует моторная зона коры больших полушарий, при ее раздражении возникает движение. Это можно показать на простом примере: при приближении пламени свечи, болевые и тепловые рецепторы пальцев руки начинают посылать сигналы, тогда нейроны соответствующего анализатора идентифицируют эти сигналы как боль, вызванную ожогом, и мышцам «отдается приказ» отдернуть руку.

Ассоциативные зоны

Ассоциативные зоны — это функциональные зоны коры головного мозга. Они связывают поступающую сенсорную информацию с полученной ранее и хранящейся в памяти, а также сравнивают между собой информацию, получаемую от разных рецепторов. Сенсорные сигналы осмысливаются, интерпретируются и, если это необходимо, передаются в связанную с ней двигательную зону. Таким образом, ассоциативные зоны участвуют в процессах мышления, запоминания и обучения.

Доли конечного мозга

Конечный мозг делится на лобную, затылочную, височную и теменную доли. В лобной доле имеются зоны интеллекта, способности к концентрации внимания и моторные зоны; в височной — слуховые зоны, в теменной — зоны вкуса, осязания, пространственной ориентации, а в затылочной — зрительные зоны.

Зона речи

Обширные повреждения левой височной доли, например, в результате серьезных травм головы и различных заболеваний, а также после инсульта, обычно сопровождаются сенсорными и моторными нарушениями речи.

Конечный мозг — это наиболее молодая и развитая часть головного мозга, которая обуславливает умение человека мыслить, чувствовать, говорить, анализировать, а также управляет всеми процессами, происходящими в организме. К функциям других частей головного мозга, прежде всего, относятся управление и передача импульсов, множество жизненно важных функций — они регулируют обмен гормонов, обмен веществ, рефлексы и др.

Для нормального функционирования мозга необходим кислород. Например, если при остановке сердца или травме сонной артерии нарушается мозговое кровообращение, то уже спустя несколько секунд человек теряет сознание, а по истечении 2 минут начинают погибать мозговые клетки.

Функции промежуточного мозга

Зрительный бугор (таламус) и подбугорье (гипоталамус) являются частями промежуточного мозга. Импульсы от всех рецепторов организма поступают в ядра таламуса. Поступившая информация в таламусе перерабатывается и направляется к большим полушариям мозга. Таламус соединяется с мозжечком и так называемой лимбической системой. Гипоталамус регулирует вегетативные функции организма. Влияние гипоталамуса осуществляется через нервную систему и железы внутренней секреции. Гипоталамус также участвует в регуляции функций многих эндокринных желез и обмена веществ, а также в регуляции температуры тела и деятельности сердечно-сосудистой и пищеварительной систем.

Лимбическая система

В формировании эмоционального поведения человека большую роль играет лимбическая система. К лимбической системе относят нервные образования, расположенные на срединной стороне конечного мозга. Эта область еще не вполне изучена. Предполагается, что лимбическая система и управляемое ею подбугорье являются ответственными за множество наших чувств и желаний, например, под их воздействием возникают жажда и голод, страх, агрессивность, половое влечение.

Функции ствола головного мозга

Ствол головного мозга — это филогенетически древняя часть мозга, состоящая из среднего, заднего и продолговатого мозга. В среднем мозге имеются первичные зрительные и слуховые центры. С их участием осуществляются ориентировочные рефлексы на свет и звук. В продолговатом мозге расположены центры регуляции дыхания, сердечно-сосудистой деятельности, функций пищеварительных органов, а также обмена веществ. Продолговатый мозг принимает участие в осуществлении таких рефлекторных актов, как жевание, сосание, чихание, глотание, рвота.

Функции мозжечка

Мозжечок контролирует движения тела. К мозжечку приходят импульсы от всех рецепторов, которые раздражаются во время движений тела. Функция мозжечка может нарушаться при принятии алкоголя или других веществ, вызывающих головокружение. Поэтому под действием опьянения люди не способны нормально координировать свои движения. В последние годы появляется все больше доказательств, что мозжечок имеет значение и в познавательной деятельности человека.

Черепно-мозговые нервы

Помимо спинного мозга очень важны и двенадцать черепно-мозговых нервов: I и II пары -обонятельный и зрительный нервы; III, IV VI пары — глазодвигательные нервы; V пара -тройничный нерв — иннервирует жевательные мышцы; VII — лицевой нерв — иннервирует мимические мышцы, содержит также секреторные волокна к слезной и слюнным железам; VIII пара — преддверно-улитковый нерв — связывает органы слуха, равновесия и гравитации; IX пара — языкоглоточный нерв — иннервирует глотку, ее мышцы, околоушную железу, вкусовые почки языка; X пара — блуждающий нерв -разделяется на ряд ветвей, которые иннервируют легкие, сердце, кишечник, регулируют их функции; XI пара — добавочный нерв — иннервирует мышцы плечевого пояса. В результате слияния спинномозговых нервов образуется XII пара — подъязычный нерв — иннервирует мышцы языка и подъязычный аппарат.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]