Строение и функции обонятельного мозга


Анатомия

Обонятельный нерв относится к группе черепных, а так же нервов специальной чувствительности. Свое начало он берет на слизистой верхнего и среднего носового хода. Отростки нейросенсорных клеток формируют там первый нейрон обонятельного тракта.

Пятнадцать-двадцать безмиелиновых волокон проникают в полость черепа через горизонтальную пластинку решетчатой кости. Там они объединяются в обонятельную луковицу, которая является вторым нейроном пути. Из луковицы выходят длинные нервные отростки, которые направляются к обонятельному треугольнику. Затем они разделяются на две части и погружаются в переднюю продырявленную пластинку и прозрачную перегородку. Там находятся третьи нейроны пути.

После третьего нейрона тракт направляется к коре большого мозга, а именно в область крючка, к обонятельному анализатору. На этом участке заканчивается обонятельный нерв. Анатомия его достаточно проста, что позволяет врачам выявлять нарушения на разных участках и устранять их.

Обоняние (обонятельная луковица), строение и описание

Рецепторы всей обонятельной системы располагаются в сфере верхних носовых ходов. Существует вомероназальная система, которая включает вомероназальный нерв, терминальный нерв и необходимую добавочную обонятельную луковицу в переднем мозге.

Она рассматривается как собственный представитель дополнительной обонятельной системы в центральной нервной системе.

По сведениям электронной микроскопии структурно объединяются: обонятельная булава; опорная клетка; центральные отростки обонятельных клеток; базальная клетка; базальная мембрана; обонятельные волоски; микроворсинки обонятельных и микроворсинки опорных клеток.

Сферическое утолщение – это и есть обонятельная булава, из которой произрастают 12 волосков около 10 мкм каждый. Обонятельные волоски при этом погружены в жидкую среду, которая вырабатывается боуменовыми железами.

Наличие данных волосков увеличивает площадь тесного контакта конкретного рецептора с молекулами с пахучим веществом. Снизу от рецепторной клетки расположен аксон. Они сопоставляют обонятельный нерв, проходящий в основании черепа и встраивающийся в обонятельную луковицу.

Спектры чувствительности у разных клеток перекрываются. При этом более 50% пахучих веществ являются общими для двух из множества обонятельных клеток.

Функции

Само название структуры указывает на то, для чего она предназначена. Функции обонятельного нерва заключаются в улавливании запаха и его расшифровке. Они вызывают аппетит и слюноотделение, если аромат приятный, или, напротив, провоцируют тошному и рвоту, когда амбре оставляет желать лучшего.

Для того чтобы достичь такого эффекта, обонятельный нерв проходит через ретикулярную формацию и направляется в ствол мозга. Там волокна соединяются с ядрами промежуточного, языкоглоточного и блуждающего нервов. В этой области так же находятся ядра обонятельного нерва.

Известны факт, что те или иные запахи вызывают у нас определенные эмоции. Так вот, чтобы обеспечить подобную реакцию, волокна обонятельного нерва связываются с подкорковым зрительным анализатором, гипоталамусом и лимбической системой.

ОБОНЯТЕЛЬНЫЙ АНАЛИЗАТОР

Обонятельный анализатор

— морфофизиологическая система, обеспечивающая восприятие различных пахучих веществ (запахов), анализ и обработку возникающих при этом афферентных возбуждений.

Обонятельный анализатор относится к химическим анализаторам дистантного действия. Пахучие вещества достигают обонятельных рецепторных клеток, расположенных в верхних отделах носа, при вдыхании их носом или ртом и распространении в полость носа через носовую часть глотки и хоаны. Акт еды также сопровождается одновременно обонятельными (см. Обоняние) и вкусовыми ощущениями (см. Вкус).

Рис. 1. Схематическое изображение периферического отдела обонятельного анализатора: 1 — обонятельные клетки слизистой оболочки полости носа; 2 — аксоны обонятельных клеток, образующие нерв; 3 — решетчатая пластинка решетчатой кости; 4 — обонятельные клубочки луковицы; 5 — слой волокон обонятельного нерва; 6 — слой обонятельных клубочков; 7 — сетевидный слой; 8 — митральные клетки, образующие митральный слой; 9 — зернистые клетки обонятельной луковицы; 10 — клетки с султанами; 11 — коллатерали осевых цилиндров митральных клеток в обонятельной луковице; 12 — коллатерали осевых цилиндров митральных клеток обонятельного тракта; 13 — пирамидные клетки обонятельного тракта; 14 — центробежное волокно: а — обонятельная луковица; б — обонятельный тракт; в — обонятельный треугольник.

Периферическая часть

Обонятельного анализатора представлена рецепторными клетками, расположенными в обонятельном эпителии слизистой оболочки полости носа, и обонятельным нервом, образованным их аксонами (рис. 1). Рецепторных клеток у человека ок. 10 млн., у кролика ок. 100 млн., у собак св. 200 млн. Рецепторные клетки Обонятельного анализатора в функциональном отношении и по эмбриогенезу подобны центральным нейронам, однако в отличие от них способны к регенерации. Имеются данные, что на протяжении всей жизни организма они постоянно обновляются, развиваясь из бластоцитов базального слоя обонятельного эпителия. Замещение рецепторных клеток на периферии приводит к обновлению синаптических связей их аксонов без нарушения работы О. а.; механизм этого явления еще не изучен.
Рис. 2. Относительные размеры обонятельной луковицы (указаны стрелками) у человека и животных: 1 — кошки; 2 — лисицы; 3 — шимпанзе; 4 — человека; (1, 2 — макросматики; 3,4 — микросматики).
Волокна обонятельного нерва

(см.) заканчиваются в обонятельной луковице, где они образуют специализированные синаптические контакты— клубочки. В этих клубочках происходит передача сенсорной информации на вторичные нейроны. Степень конвергенции импульсов от рецепторных клеток очень велика: в каждом клубочке несколько десятков вторичных нейронов обонятельной луковицы получают афферентации) от десятков тысяч рецепторных клеток. Обнаружены элементы пространственного соответствия между рецепторной поверхностью обонятельного эпителия и обонятельной луковицей. Обонятельная луковица — это сложно организованный нервный центр. В луковице выделяют 6 основных слоев: слой волокон обонятельного нерва, клубочковый, наружный синаптический, или сетевидный, слой митральных нейроцитов, внутренний зернистый слой. Митральные нейроциты служат основными обонятельными нейронами второго порядка. Их аксоны образуют проекционные пути из обонятельной луковицы. Относительные размеры обонятельной луковицы сильно варьируют. У некоторых млекопитающих (макросматиков) с хорошо развитым обонянием она может составлять треть и даже половину длины всего переднего мозга (рис. 2). У приматов, особенно у человека, обонятельная луковица редуцирована. Области первичной проекции обонятельной луковицы включают переднее обонятельное ядро, препириформную и периамигдалярную кору, обонятельный бугорок и другие отделы переднего мозга. Зона первичной проекции обонятельной луковицы в свою очередь связана афферентными и эфферентными путями с центрами переднего и промежуточного мозга, включая гиппокамп (аммонов рог), миндалевидное тело, гипоталамус, таламус и др.

Традиционно к центральному отделу О. а. относили обонятельную луковицу, зоны первичной и вторичной проекции луковицы в переднем мозге (древняя кора, старая кора и подкорковые ядра), объединенные термином «обонятельный мозг». Экспериментально было показано, что функции большинства отделов обонятельного мозга связаны с процессами формирования мотиваций и эмоций, процессами памяти, управлением вегетативными реакциями и др. (см. Лимбическая система). Обонятельная луковица является единственным отделом мозга, удаление которого приводит к полной потере обоняния. Области первичной проекции из обонятельной луковицы можно считать ассоциативными обонятельными центрами. В этих областях происходит интеграция обонятельной и другой сенсорной и висцеральной афферентации. Проекции рецепторных клеток на обонятельную луковицу и проекции из обонятельной луковицы на другие отделы мозга гомолатеральны. Поэтому при односторонних поражениях различных звеньев О. а. расстройства обоняния развиваются на пораженной стороне.

Рис. 3. Схематическое изображение структуры и проводящих путей обонятельного анализатора: 1 — обонятельная луковица; 2 — обонятельный тракт; 3 — обонятельный треугольник; 4 — промежуточная обонятельная полоска; 5 — латеральная обонятельная полоска; 6 — крючок; 7 — миндалевидное тело; 8 — парагиппокампальная извилина; 9 — лоток гиппокампа; 10 — зубчатая извилина; 11 — поясной пучок; 12 — свод и спайка свода; 13 — пластинка крыши среднего мозга; 14 — прободающие волокна; 15 — сводчатая извилина; 16 — таламус; 17 — сосцевидно-таламический пучок; 18 — продольная медиальная полоска серого покрова; 19 — свод; 20 — обонятельный пучок гиппокампа; 21 — терминальная полоска; 22 — мозговая полоска таламуса; 23 — прозрачная перегородка; 24 — бахромка гиппокампа; 25 — передняя спайка; 26 — медиальная обонятельная полоска; 27 — перегородочно-таламический пучок; 28 — ножка прозрачной перегородки; 29 — обонятельные волокна к серому бугру; 30 — основной обонятельный пучок из сосцевидного тела; 31 — сосцевидное тело; 32 — сосцевиднопокрышечный пучок; 33—отогнутый пучок; 34 — межножковый узел; 35 — ножка мозга; 36 — ножка сосцевидного тела; 37 — задний продольный пучок; 38 — переднее ядро таламуса.

Проводящие пути

— система последовательно расположенных нейронов, образующих сложные рефлекторные дуги, благодаря к-рым становится возможным проведение импульсов с периферии (от рецепторных обонятельных клеток) к корковым и подкорковым обонятельным центрам, а от них к высшим отделам нервной системы (рис. 3). Первый нейрон обонятельного пути представлен обонятельными клетками, расположенными в слизистой оболочке верхнего носового хода. Дендриты этих клеток заканчиваются здесь же обонятельными булавами, а аксоны, в составе обонятельного нерва идущие к обонятельной луковице (bulbus olfactorius),— у митральных нейроцитов. Эта часть обонятельного пути получила название «периферический обонятельный путь». От митральных нейроцитов обонятельной луковицы начинается центральный обонятельный путь (tractus olfactorius). Аксоны нейронов, представленных митральными нейроцитами, следуют в составе поверхностного молекулярного слоя обонятельного тракта по направлению к обонятельному треугольнику (trigonum olfactorium). Часть волокон обонятельного тракта прерывается в области скопления нервных клеток, расположенных в центральных отделах обонятельного тракта, в обонятельном треугольнике или в переднем продырявленном веществе (substantia perforata ant.). Аксоны нейронов, тела к-рых расположены во вторичных обонятельных корковых центрах, группируются в виде трех обонятельных пучков — латерального, промежуточного и медиального, являющихся основой одноименных обонятельных полосок (striae olfactoriae). В составе обонятельных пучков имеется часть волокон и митральных нейроцитов. Латеральный обонятельный пучок — наиболее мощный, он идет непосредственно к корковому концу обонятельного анализатора — крючку парагиппокампальной извилины. Промежуточный обонятельный пучок заканчивается у клеток переднего продырявленного вещества своей и противоположной стороны, следуя в последнем случае через переднюю спайку. Аксоны клеток продырявленного вещества проходят через прозрачную перегородку, свод и по бахромке гиппокампа устремляются к крючку парагиппокампальной извилины. Внутренний обонятельный пучок, или медиальный пучок переднего мозга (основной обонятельный пучок Валленберга, radiatio olfactoria basalis;, идет от обонятельной луковицы и тракта через глубокие слои переднего продырявленного вещества к мамиллярным, или сосцевидным, телам (corpora mamillaria). Обонятельно-поводковый пучок (fasc. olfactohabenularis) представлен волокнами, направляющимися в составе мозговой полоски таламуса (stria medullaris thalami) к ядру поводка (nucleus habenulae), где начинается нисходящий путь, связанный с мотонейронами спинного мозга. Терминальная полоска (stria terminalis) залегает в борозде между хвостатым ядром и таламусом (зрительным бугром). Она содержит пучок волокон, идущий от крючка парагиппокампальной извилины и миндалевидного тела (corpus amygdaloideum) к переднему продырявленному веществу. Медиальный обонятельный пучок заканчивается у клеток подмозолистого поля (area subcallosa, s. area parolfactoria Broca) и napa-терминальной извилины (gyrus paraterminalis s. gyrus subcallosus). Аксоны клеток подмозолистого поля и паратерминальной извилины направляются к парагиппокампальной извилине или к гиппокампу двумя путями: над мозолистым телом и под ним. Над мозолистым телом волокна образуют два полукольца. Большая часть их проходит в белом веществе сводчатой извилины (gyrus fornicatus; BNA) в составе поясного пучка; меньшая часть, образующая второе полукольцо, следует в составе медиальных продольных полосок серого покрова (striae longi tu d in ales med.), покрывающего сверху мозолистое тело, а затем по ленточной извилине (gyrus fasciolaris) и зубчатой извилине (gyrus dentatus). Волокна, проходящие под мозолистым телом, достигают гиппокампа и крючка парагиппокампальной извилины, направляясь через пластинку прозрачной перегородки (lamina septi pellucidi), свод (fornix) и бахромку гиппокампа (fimbria hippocampi). Существуют прямые связи между обонятельным центром парагиппокампальной извилины и гиппокампом. Обонятельные центры посредством ассоциационных путей соединены с различными отделами коры, преимущественно с корой гиппокампа. В свою очередь связь коры гиппокампа правого и левого полушарий и сосцевидных тел осуществляется за счет комиссуральных и проекционных волокон свода. Сосцевидные тела посылают волокна к различным образованиям мозгового ствола, в частности через главный сосцевидный пучок (fasc. mamillaris princeps). Этот пучок отходит от медиального ядра сосцевидного тела и распадается на два пучка: сосцевидно-таламический (fasc. mamillothalamicus), направляющийся к переднему ядру таламуса, и сосцевидно-покрышечный (fasc. mamillotegmentalis), следующий к покрышке ножки мозга, ее ядрам, а частично и к серому веществу водопровода мозга, где берет начало задний продольный пучок (fasc. longitudinalis post.), достигающий ядер черепных нервов.

Нарушения функции обонятельного анализатора — см. Обоняние.

Библиография:

Богомолова E. М. Обонятельные образования мозга и их биологическое значение, Усп. физиол, наук., т. 1, № 4, с. 126, 1970, библиогр.; Бронштейн А. И. Вкус и обоняние (Химические анализаторы ротовой и носовой полости), М.— Л., 1956; Гусельникова К. Г. и Гусельников В. И. Электрофизиология обонятельного анализатора позвоночных, М., 1975; Многотомное руководство по неврологии, под ред. Н. И. Гращенкова, т. 1, кн. 2, с. 194, М., 1957; Саркисов С. А. Очерки по структуре и функции мозга, М., 1964; Физиология сенсорных систем, под ред. Г. В. Гершуни, ч. 2, с. 515, Л., 1972; Adey W. R. Higher olfactory centres, в кн.: Taste a. smell in vertebrates, ed. by G. E. W. Wolstenholme a. J. Knight, p. 357, L., 1970; Clara M. Das Nervensystem des Menschen, Lpz., 1959; Gottschick J. Die Leistungen des Nervensystems, Jena, 1955; Les grandes activites du rhinencephale, publ. par Th. Alajouanine, v. 1—2, P., 1961; Holley A. et MacLeod P. Transduction et codage des informations olfactives chez les vertebres, J. Physiol. (Paris), t. 73, p. 725, 1977, bibliogr.

А. В. Минор; В. В. Турыгин (морфология).

Аносмия

«Аносмия» переводится как «отсутствие обоняния». Если подобное состояние наблюдается с двух сторон, то это свидетельствует в пользу поражения слизистой носа (риниты, синуситы, полипы) и, как правило, не грозит никакими серьезными последствиями. Но при односторонней утрате обоняния необходимо задуматься о том, что может быть поражен обонятельный нерв.

Причинами заболевания могжет быть недоразвитый обонятельный тракт или переломы костей черепа, например, решетчатой пластинки. Ход обонятельного нерва вообще тесно связан с костными структурами черепа. Повредить волокна могут и осколки кости после перелома носа, верхней челюсти, глазницы. Повреждение обонятельных луковиц возможно и из-за ушиба вещества мозга, при падении на затылок.

Воспалительные заболевания, такие как этмоидит, в запущенных случаях расплавляют решетчатую кость и повреждают обонятельный нерв.

Механизм развития

Обонятельная зона слизистой носа, содержащая специфические нервные рецепторы, расположена в верхней носовой раковине. Для того, чтобы человек ощущал запахи, воздух вместе с пахучими веществами должен пройти через этот отдел дыхательных путей. При наличии механических препятствиях прохождению воздуха к анатомическим структурам наблюдаются нарушения обоняния по типу снижения чувствительности к некоторым или всем запахам. Такое состояние зачастую обусловлено искривлениями носовой перегородки, гипертрофическим ринитом, синуситами и аденоидами.

Патологическую нечувствительность к пахучим веществам могут провоцировать нарушения со стороны разных отделов обонятельного анализатора. В норме информация от рецепторов слизистой носа по специальным волокнам поступает в подкорковые структуры и центр обоняния в коре мозга. Симптом отмечается при травматическом повреждении и разрыве обонятельного нерва вследствие черепно-мозговых травм, ошибок при проведении нейрохирургических операций. При одностороннем поражении нервных структур потеря обоняния определяется только на стороне патологического процесса.

Угнетение чувствительности к различным ароматам развивается при патологических процессах в слизистой оболочке полости носа (например, атрофическом рините), когда разрушаются периферические нервные рецепторы. Нарушения восприятия запахов также возникают при дегенеративных заболевания головного мозга (болезни Паркинсона, Альцгеймера) и опухолях головного мозга. В этом случае дизосмия обусловлена постепенной атрофией и гибелью нервных клеток обонятельной зоны.

Особый механизм нарушения обоняния характерен для эпилепсии. При этом заболевании пациенты отмечают появление неприятных запахов, что связано с формированием зон возбуждения в головном мозге, импульсы из которых распространяются на различные отделы коры. Дизосмия может встречаться и при отсутствии органической патологии — симптом наблюдается при острых психозах, истерических состояниях. Развитие обонятельной дисфункции связано с функциональным нарушением связей между отделами периферической и центральной нервной системы.

Гипосмия и гиперосмия

Гипосмия – это снижение обоняния. Оно может возникать из-за тех же причин, что и аносмия:

  • утолщения слизистой стенки носа;
  • воспалительных заболеваний;
  • новообразований;
  • травм.

Иногда это единственный признак аневризмы сосудов мозга или опухоли передней черепной ямки.

Гиперосмия (повышенное или обостренное обоняние), отмечается у эмоционально лабильных людей, а так же при некоторых формах истерии. Повышенная чувствительность к запахам наблюдается у людей, которые вдыхают наркотики, например, кокаин. Иногда гиперосмия обусловлена тем, что иннервация обонятельного нерва распространяется на большую область слизистой носа. Такие люди, чаще всего, становятся работниками парфюмерной промышленности.

Паросмия: обонятельные галлюцинации

Паросмия – это извращенное восприятие запаха, которое в норме встречается при беременности. Патологическая паросмия наблюдается иногда при шизофрении, поражении подкорковых центров обоняния (парагиппокампальной извилины и крючка), при истериях. У пациентов с железодефицитной анемией наблюдаются похожие симптомы: удовольствие от запаха бензина, краски, мокрого асфальта, мела.

Поражения обонятельного нерва в области височной доли вызывает специфическую ауру перед эпилептическими припадками и вызывает галлюцинации при психозах.

Методика исследования

Для того чтобы определить состояние обоняния у пациента, врач-невропатолог проводит специальные тесты на узнавание различных запахов. Индикаторные ароматы не должны быть слишком резкими, чтобы не нарушать чистоты эксперимента. Пациента просят успокоиться, закрыть глаза и прижать пальцем ноздрю. После этого ко второй ноздре постепенно подносят пахнущее вещество. Рекомендуют использовать знакомые для человека запахи, но при этом избегать нашатырного спирта, уксуса, так как при их вдыхании, кроме обонятельного, раздражается еще и тройничный нерв.

Опухоли мозга и обоняние

При опухолях мозга различной локализации, гематомах, нарушении оттока ликвора и других процессах, которые сдавливают вещество мозга или придавливают его к костным образованиям черепа. В этом случае может развиваться одно- или двухстороннее нарушение обоняния. Врачу следует помнить, что нервные волокна перекрещиваются, поэтому даже при локализации поражения с одной стороны, гипосмия будет двухсторонняя.

Поражение обонятельного нерва является составной частью краниобазального синдрома. Он характеризуется не только сдавление мозгового вещества, но и его ишемией. У больных развивается патология первых шести пар черепных нервов. Симптомы могут быть неравномерными, встречаются различные комбинации.

содержание .. 104 105 106 107 108 109 ..

Физиология коры полушарий большого мозга (анатомия человека)

Конечный, или большой мозг, достигший своего наивысшего развития у человека, справедливо считают самым сложным и самым удивительным созданием природы.

Функции этого отдела ЦНС настолько отличаются от функций ствола и спинного мозга, что они выделяются в особую главу физиологии — физиологию высшей нервной деятельности. Этот термин введен И. П. Павловым. Деятельность нервной системы, направленную на объединение и регуляцию всех органов и систем организма, И. П. Павлов назвал низшей нервной деятельностью. Под высшей нервной деятельностью (психической) он понимал поведение, деятельность, направленную на приспособление организма к изменяющимся условиям внешней среды, на уравновешивание с окружающей средой. В поведении животного, его взаимоотношениях с окружающей средой ведущую роль играет конечный мозг, орган сознания, памяти, а у человека — орган умственной деятельности, мышления.

Большие достижения И. П. Павлова в области изучения функций полушарий большого мозга объясняются тем, что он доказал рефлекторную природу деятельности коры и открыл присущий только ей новый, качественно высший тип рефлексов, а именно условные рефлексы. Открыв основной механизм деятельности коры полушарий большого мозга, он тем самым создал плодотворный, прогрессивный метод изучения ее функций — метод условных рефлексов. Как выяснилось в дальнейшем, условные рефлексы есть те элементарные акты, те «кирпичики», из которых строится поведение человека и животных.

Значение полушарий у различных животных до И. П. Павлова изучали путем хирургического удаления их. Результаты удаления полушарий большого мозга птиц и собак показали, что вегетативные функции: кровообращение, дыхание, пищеварение и др., существенно не нарушаются. При тщательном уходе животное живет долго. Нарушается его связь с внешней средой. На непосредственно действующие раздражители: укол булавкой, раздражение слизистой оболочки рта пищей — позникает вполне адекватная реакция: животное отдергивает лапу, проглатывает пищу, т. е. у животного сохраняются врожденные безусловные рефлексы. Безвозвратно утрачиваются все приобретенные реакции поведения, выработанные в процессе индивидуальной жизни условные рефлексы.

Локализация функций в коре полушарий большого мозга. Для изучения локализации функций в коре полушарий большого мозга или, иными словами, значения отдельных зон коры применяют различные методы: частичное удаление коры, электрическое и химическое раздражение, запись биотоков мозга и метод условных рефлексов.

Метод раздражения позволил установить в коре следующие зоны: двигательные (моторные), чувствительные (сенсорные) и немые, которые позже назвали ассоциативными.

Двигательные зоны коры. Движения возникают при раздражении коры в области предцентральной извилины. Электрическое раздражение верхней части извилины вызывает движение мышц ног и туловища, средней — рук, нижней — мышц лица. Величина корковой двигательной зоны пропорциональна не массе мышц, а точности движений. Особенно велика зона, управляющая движениями кисти руки, языком, мимической мускулатурой (рис. 119).

Рис. 119. Расположение и размеры двигательных зон в коре полушарий большого мозга (по Пенфилду и Расмуссену). Размеры частей тела соответствуют размерам двигательного представительства. 1 — стопа; 2 — голень; 3 — колено; 4 — бедро; 5 — туловище; 6 — кисть; 7 — большой палец кисти; 8 — шея; 9 — лицо; 10 — губы; 11 — язык; 12 — гортань

Сенсорные зоны коры. Экстирпация различных участков коры у животных позволила в общих чертах установить локализацию сенсорных (чувствительных) функций. Зона коры, куда проецируется данный вид чувствительности, называется первичной проекционной зоной.

Кожная чувствительность человека, чувства прикосновения, давления, холода и тепла проецируются в постцентральную извилину. В верхней ее части находится проекция кожной чувствительности ног и туловища, ниже — рук и еще ниже — головы.

Абсолютная величина проекционных зон отдельных участков кожи неодинакова. Так, проекция кожи кисти рук занимает в коре большую площадь, чем проекция поверхности туловища (рис. 120).

Рис. 120. Расположение и размеры чувствительных зон в коре полушарий большого мозга (по Пенфилду и Расмуссену). Размеры частей тела соответствуют размерам сенсорного представительства. 1 — половые органы; 2 — стопа; 3 — бедро; 4 — туловище; 5 — плечо; 6 — кисть; 7 — указательный и большой пальцы кисти; 8 — лицо; 9 — губы; 10 — зубы; 11 — язык; 12 — глотка и внутренние органы

Величина корковой проекции пропорциональна значению данной рецептивной поверхности в поведении. Интересно, что у свиньи особенно велика проекция в кору пятачка.

Суставно-мышечная, проприоцептивная, чувствительность проецируется в постцентральную и предцентральную извилины.

Зрительная зона коры находится в затылочной доле. При раздражении ее возникают зрительные ощущения — вспышки света; удаление ее приводит к слепоте. Удаление зрительной зоны на одной половине мозга вызывает слепоту на одной половине каждого глаза, так как каждый зрительный нерв делится в области основания мозга на две половины (образует неполный перекрест): одна из них идет к своей половине мозга, а другая — к противоположной.

Способность видеть — это врожденное свойство, но способность узнавать предметы вырабатывается в течение жизни.

Функция слуха обеспечивается височными долями больших полушарий. Раздражение их вызывает простые слуховые ощущения. Удаление обеих слуховых зон приводит к глухоте, а одностороннее удаление понижает остроту слуха.

Обонятельная зона коры находится на основании мозга, в области парагиппокампальной извилины.

Проекция вкусового анализатора, по-видимому, локализуется в нижней части постцентральной извилины, куда проецируется чувствительность полости рта и языка.

Лимбическая система. В конечном мозге располагаются образования, составляющие лимбическую систему: поясная извилина, гиппокамп, миндалевидное тело, свод, прозрачная перегородка. Они участвуют в поддержании постоянства внутренней среды организма, регуляции вегетативной функции и формировании эмоций и мотиваций. Эту систему иначе называют «висцеральным мозгом». Сюда поступает информация от внутренних органов. При раздражении желудка, мочевого пузыря в лимбической коре возникают вызванные потенциалы.

Электрическое раздражение различных областей лимбической системы изменяет вегетативные функции: кровяное давление, дыхание, движения пищеварительного тракта, тонус матки и мочевого пузыря.

Разрушение отдельных частей лимбической системы приводит к нарушению поведения: животные могут становиться более спокойными или, напротив, агрессивными, легко дающими реакции ярости, изменяется половое поведение. Лимбическая система имеет широкие связи со всеми областями головного мозга, ретикулярной формацией и гипоталамусом. Она обеспечивает корковый контроль всех вегетативных функций: сердечно-сосудистой, дыхательной, пищеварительной, обмена веществ, энергии.

Ассоциативные зоны коры. Проекционные зоны коры занимают небольшой участок поверхности коры больших полушарий мозга человека. Остальная часть занята так называемыми ассоциативными зонами. Нейроны этих областей не связаны ни с органами чувств, ни с мышцами, они осуществляют связь между различными областями коры, интегрируя, объединяя все поступающие в кору импульсы в целостные акты научения (чтение, речь, письмо), логического мышления, памяти и обеспечивая возможность целесообразной реакции поведения.

При нарушениях ассоциативных зон появляются агнозия — неспособность узнавания и апраксия — неспособность производить заученные движения. Например, стереоагнозия выражается в том, что человек не может найти на ощупь у себя в кармане ни ключа, ни коробки спичек, хотя зрительно он их сразу узнает. При повреждении наружной поверхности затылочной доли — ассоциативной зрительной зоны, зрение сохраняется, но наступает расстройство узнавания (зрительная агнозия). Больной, будучи грамотным, не может прочесть написанное, узнает знакомого человека после того, как тот заговорит. При повреждении участков коры слуховой зоны может наступить слуховая агнозия: человек слышит, но перестает понимать значение слов.

В случае нарушения ассоциативных речевых зон коры возможна афазия — потеря речи. Афазия может быть моторной и сенсорной. Моторная афазия возникает при поражении задней трети нижней лобной извилины слева, так называемого центра Брока (этот центр находится у правшей только в левом полушарии). Больной понимает речь, но сам говорить не может.

При аграфии человек разучивается писать, при апраксии — производить заученные движения: зажечь спичку, застегнуть пуговицу, пропеть мелодию и др.

Роль каждого из полушарий в их совместной деятельности неодинакова. Если у правшей левое полушарие превалирует в двигательных функциях организма, то правое — в чувствительных. (Напомним, что левое полушарие иннервирует мышцы правой половины тела и получает информацию от рецепторов правой стороны; левая половина тела иннервируется правым полушарием.)

Наиболее ярко выявляется двигательная асимметрия мозга: правые рука и нога (у правшей) сильнее, ловчее и точнее в движениях, чем левые. Большинство людей являются правшами. Насильственное переучивание детей-левшей не рекомендуется.

Левое полушарие у правшей обеспечивает понимание и формирование устной и письменной речи, математические способности и отвлеченное, словесное, логическое мышление (поражение его сопровождается афазией и аграфией). Правому «неграмотному» полушарию свойственно образное, конкретное мышление. Музыкальные и художественные способности в основном определяются функцией правого «эмоционального» полушария.

Подмеченное И. П. Павловым деление людей на «мыслителей» и «художников», т. е. лиц с преобладанием логического или образного типа мышления, связано с преобладанием функции соответствующего полушария.

Биоэлектрическая активность коры полушарий большого мозга. Колебания электрических потенциалов коры впервые были записаны В. В. Правдич-Неминским в 1913 г. В настоящее время изучение их стало одним из ведущих методов исследования мозга в физиологии и клинике. Записывают колебания потенциалов коры при помощи многоканального катодного осциллографа. У людей потенциалы обычно снимают с кожи волосистой части головы при помощи электродов, закрепляемых различными способами, например лейкопластырем. При этом электрод отводит суммарную активность десятков тысяч нейронов коры, расположенных под ним. Обычно отводят биотоки от многих симметричных областей мозга, например лобных, теменных, затылочных. Получаемая запись носит название электроэнцефалограммы (ЭЭГ).

На ЭЭГ различают волны разной частоты и величины (амплитуды). По частоте колебаний в секунду выделяют: дельта-волны — самые медленные, 0,5 — 3,5; тета-волны — от 4 до 7; альфа-волны — от 8 до 13; бета-волны — более

13. Чем больше частота волн, тем меньше их амплитуда. Следовательно, самыми мелкими колебаниями являются бета-волны и самыми большими — дельта-волны (рис. 121).

Рис. 121. Основные ритмы электроэнцефалограммы. I — бета-ритм; II — альфа-ритм; III — тета-ритм; IV — дельта-ритм; V — судорожные разряды

На ЭЭГ в зависимости от состояния мозга и зоны записи преобладает тот или иной ритм. Когда человек находится в покое и глаза его закрыты, то с затылочных долей регистрируется альфа-ритм с частотой колебаний 8 — 13 в 1 с. При открытых глазах альфа-ритм исчезает и появляется более частый бета-ритм. Он возникает при решении трудных задач, эмоциональном возбуждении, напряженном внимании. Описан такой эпизод. У Эйнштейна записывали ЭЭГ. Регистрировался альфа-ритм. Эйнштейн при этом решал несложные для него задачи. Вдруг на ЭЭГ появился бета-ритм. На вопрос о том, что произошло, Эйнштейн ответил, что вспомнил грубую ошибку во вчерашних вычислениях.

Во время сна волны становятся медленнее и выше, преобладает дельта-ритм. Однако во время сна возникают периоды, когда активность мозга повышается и записываются частые волны альфа- и бета-ритма (парадоксальный сон). Установлено, что эти изменения на ЭЭГ сочетаются со сновидениями.

Прекращение кровоснабжения мозга уже через 15 с приводит к исчезновению электрической активности. Запись ЭЭГ используется в хирургической клинике для наблюдения за состоянием мозга во время больших операций, особенно на «сухом сердце». Во время глубокого наркоза альфа- и бета-ритмы полностью отсутствуют.

При некоторых заболеваниях головного мозга характер ЭЭГ меняется. Например, у больных эпилепсией наблюдается характерный тип ЭЭГ. При помощи электроэнцефалографии можно определить расположение опухоли в мозге.

содержание .. 104 105 106 107 108 109 ..

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]