Как свет и тьма управляют нашими биологическими ритмами


Содержание

  • 1 Альфа-ритм 1.1 Общая характеристика.
  • 2 Бета-ритм
      2.1 Общая характеристика.
  • 3 Гамма-ритм
      3.1 Общая характеристика.
  • 4 Дельта-ритм
      4.1 Общая характеристика.
  • 5 Тета-ритм
      5.1 Общая характеристика.
  • 6 Каппа-ритм
      6.1 Общая характеристика.
  • 7 Мю-ритм
      7.1 Общая характеристика.
  • 8 Тау-ритм, лямбда-ритм, сонные веретена
      8.1 Общая характеристика
  • 9 Соотношение ритмов
  • 10 Литература
  • Альфа-ритм

    Альфа ритм (α-ритм) — частота колебания варьируется от 8 до 13 Гц. Амплитуда 5-100 мкВ, наибольшая амплитуда проявляется при закрытых глазах и в затемненном помещении. Регистрируется преимущественно в затылочной и теменной областях (зрительных отделах мозга).

    Общая характеристика.

    Регистрируется у 85-95 % здоровых взрослых людей. Альфа-ритм связан с расслабленным состоянием бодрствования, покоя. Альфа-волны возникают тогда, когда мы закрываем глаза и начинаем расслабляться.

    Депрессия альфа-ритма

    (недостаток альфа-волн) возникает тогда, когда человек открывает глаза или думает над задачей, которая требует определенных зрительных представлений. При повышении функциональной активности мозга амплитуда альфа-ритма уменьшается вплоть до полного исчезновения. Так же может быть признаком беспокойства, гнева, страха, тревоги, вызывающие депрессию; нарушений, связанных в той или иной мере с изменениями в деятельности активирующих систем мозга и, как следствие, с повышенным уровнем активации вегетативной и центральной нервной системы.

    Где спрятаны часы

    Биологические часы — одна из систем организма, как иммунная или сердечно-сосудистая. Эти часы нужны всем живым существам, чтобы синхронизироваться с ритмами природы — подстраиваться под смену дня и ночи или смену времен года. Биологическим часам подчиняются многие функции организма, в том числе теплорегуляция, артериальное давление, выработка гормонов.
    Часы, управляющие нашим организмом, работают на трех уровнях. Первый — крошечный часовой механизм, спрятанный в каждой клетке. За его обнаружение американские исследователи Джеффри Холл, Майкл Росбаш и Майкл Янг получили в 2021 году Нобелевскую премию в области физиологии и медицины.

    Главную роль в нем играют специальные сlock-белки, которые синтезируются во всех клетках, имеющих ядро, — и у животных, и у растений, и у грибов. Часть сlock-белков образуется утром, активируя обмен веществ в клетке, другая — вечером, тормозя метаболизм. Так и задается суточный, или циркадный (от латинского circa — около и dies — день), ритм работы отдельной клетки. А если какой-то из генов, синтезирующих сlock-белки, мутирует, могут нарушиться различные ритмы организма: сна и бодрствования, двигательной активности, пищеварения. Все эти ритмы связаны — если человек не спит по ночам, это может привести не только к бессоннице или депрессии, но и к диабету, даже к онкологическим заболеваниям.

    Часы нужны не только каждой клетке, но и организму в целом. Синхронизирует ритмы всех клеток особая гормональная железа мозга под названием эпифиз, или шишковидная железа, которая вырабатывает мелатонин и серотонин — гормоны, регулирующие наш сон и бодрствование, а также аппетит и настроение. В светлое время суток шишковидная железа производит «гормон счастья» серотонин, а в темное серотонин преобразуется в «гормон сна» мелатонин — он делает сон более глубоким и полноценным.

    В достаточном количестве мелатонин вырабатывается только в темноте, даже тусклый свет сокращает его выработку — выключайте все лампы и занавешивайте окна! А серотонину, наоборот, нужен свет: чем больше света, тем лучше настроение и выше работоспособность.

    Теперь перейдем на третий уровень. Высший центр управления всеми ритмическими функциями организма — это супрахиазматические ядра гипоталамуса. Именно в эту группу нервных клеток поступает прямой сигнал от сетчатки глаза, который подсказывает часам, что сейчас на улице: день или ночь. Эта небольшая область в промежуточном мозге — главный генератор суточных ритмов, ее нейроны подстраиваются под внешние световые сигналы и управляют эпифизом.

    Бета-ритм

    Бета-ритм (β-ритм) — частота колебания варьируется от 14 до 40 Гц. Амплитуда колебания обычно до 20 мкВ. В норме он весьма слабо выражен и в большинстве случаев имеет амплитуду 3-7 мкВ. Регистрируется в области передних и центральных извилин. Распространяется на задние центральные и лобные извилины.

    Общая характеристика.

    Бета-волны — самые быстрые. Бета-ритм в норме связан с высшими когнитивными процессами и фокусированием внимания, в обычном бодрствующем состоянии, когда мы с открытыми глазами наблюдаем за происходящими событиями, или сосредоточенны на решении каких-либо текущих проблем.

    Депрессия бета-ритма.

    Бета-ритм связан с соматическими, сенсорными и двигательными корковыми механизмами и дает реакцию угасания на двигательную активацию или тактильную симуляцию. При выполнении или даже умственном представлении движения бета-ритм исчезает в зоне соответствующей активности. Повышение бета-ритма — острая реакция на стрессовое воздействие.

    По волнам головного мозга учёные определяют, как нейроны жонглируют вариантами возможного будущего

    Решения, решения. Все мы постоянно вынуждены делать сознательный или бессознательный выбор. Не только тогда, когда размышляем о том, что надеть, что съесть или как провести выходные, но и тогда, когда решаем, какой рукой следует взять карандаш или стоит ли по-другому распределить свой вес, сидя на стуле. Даже при тривиальном выборе наш мозг перебирает кучу вариантов «Что если?» и взвешивает их. Кажется, что некоторые действия, — например, отскок в сторону, чтобы не оказаться под колёсами автомобиля, — мы осуществляем автоматически, однако и в этих случаях наш мозг успевает очень быстро экстраполировать на возникшую ситуацию прошлый опыт, чтобы сделать прогнозы и определить наше поведение.

    В январе этого года в Cell

    опубликована статья группы калифорнийских исследователей, изучавших работу крысиного головного мозга в критический момент принятия решения. Учёные наблюдали, как в этот момент нейроны стремительно анализируют доступные для крыс конкурирующие варианты действий. Не исключено, что описанный в статье механизм лежит в основе не только способности принимать решения на основе выбора возможных действий, но и способности животных предвидеть появление более абстрактных возможностей, которая сродни воображению.

    Группу учёных, опубликовавших статью, возглавляет нейробиолог Лорен Франк (Loren Frank) из Калифорнийского университета в Сан-Франциско (University of California, San Francisco, UCSF). Эта команда исследовала клеточную активность в гиппокампе — области головного мозга, которая имеет форму морского конька и, как известно, играет важную роль в навигации, а также в хранении воспоминаний и извлечении их из памяти. Особое внимание учёные уделили клеткам места — нейронам по прозвищу «GPS мозга», ментально отображающим местоположение животного при его перемещениях в пространстве.

    Было показано, что, когда животное осуществляет локомоции, клетки места проворно «выстреливают» определёнными очередями. Эта активность отражает пространство, находящееся в диапазоне движения: от того, что непосредственно сзади, до того, что прямо перед животным. (Согласно полученным данным, ментальный охват переднего пространства несёт и информацию о расположении целей или вознаграждений). Эти паттерны нейронной активности, называемые тета-ритмами, повторяются у крыс примерно восемь раз в секунду и репрезентируют постоянно обновляемую виртуальную траекторию перемещения животных.

    И вот теперь Франку и его команде удалось выяснить, что, когда животное собирается действовать, нейронная активность, связанная с тета-ритмами, носится то взад, то вперёд по всевозможным будущим путям — не только для предсказания того, что должно произойти, но и для своеобразной скоростной, снующей туда и обратно, дегустации блюд из буфета предстоящих вариантов действий.

    Чередование сценариев в мозговых волнах

    Исследователи обучили крыс выбирать в Ш-образном лабиринте альтернативные маршруты и записывали с помощью электродов активность клеток места. Попадая в центральный изгиб лабиринта, животные поворачивали либо налево, либо направо. Учёные заметили, что, стоило грызунам оказаться в точке выбора направления дальнейшего движения, как их клетки места начинали вести себя несколько странно.

    Крысиный головной мозг имеет те клетки места, которые «выстреливают» в центре лабиринта непосредственно перед поворотом налево (и в самый его момент), и другие — те, что «выстреливают» перед поворотом направо (и в самый его момент). Казалось логичным, что у крысы, оказавшейся в точке изгиба, оба набора клеток иногда могут «выстреливать» вместе: в данном пункте лабиринта совместная активность всех этих клеток отражала бы ситуацию выбора, в которую попало животное. Однако этого никогда не наблюдалось.

    «Не исключено, что описанный в статье механизм лежит в основе не только способности принимать решения на основе выбора возможных действий, но и способности животных предвидеть появление более абстрактных возможностей, которая сродни воображению».

    Взамен наборы клеток «выстреливали» по очереди. Было похоже на то, что перед тем, как животное решило, куда идти, его гиппокамп подвергал анализу как «левый», так и «правый» вариант будущих локаций, ментально чередуя их и при этом никогда не давая им соединиться.

    «Головной мозг усердно следил за тем, чтобы не смешивать эти вещи, — подчёркивает Франк. — Почему — было неясно».

    Схожие виды ментальных движений вперёд-назад по потенциальному будущему, происходящие в клетках места животных, вынужденных перемещаться по лабиринтам, уже были описаны в работе Дэвида Редиша (David Redish), нейробиолога из Университета Миннесоты (University of Minnesota), и ныне покойного Адама Джонсона (Adam Johnson). Однако эти ментальные движения казались связанными с более обдуманными действиями. К тому же, Редиш и Джонсон не выясняли, как возникают «левые» или «правые» репрезентации — случайно или систематически.

    Напротив, команда UCSF установила, что обнаруженные ею чередования всегда точно согласованы с другими циклами тета-ритма. В течение одного цикла гиппокамп генерировал образ поворота налево, а затем переключался на противоположный образ, осуществляя его создание в ходе другого, следующего цикла. Эти сценарии не всегда чередовались одинаково на протяжении всего эксперимента — иногда в течение нескольких циклов сохранялся один и тот же сценарий, — но структура сигналов оставалась неизменной. По-видимому, 125-миллисекундные последовательности так разделяли различные гипотезы мозга о будущем, что в результате получалась непрерывная и последовательная общая структура.


    Альтернативные варианты будущего в циклическом сигнале. Иллюстрация: Люси Ридинг-Икканда (Lucy Reading-Ikkanda) / Журнал
    Quanta
    . Перевод — «
    XX2 век
    ».

    «Что удивляет, так это упорядоченность. Это совершенно невероятно, — говорит Дьёрдь Бужаки (György Buzsáki), невролог из Медицинской школы Нью-Йоркского университета (New York University School of Medicine), не принимавший участия в данном исследовании. — Это отношения «один к одному»: один цикл — левый, следующий — правый, затем — левый, следующий — правый». По мнению Бужаки, выгода от этой строгой структурированности может состоять в том, что каждый сценарий «Что если?» проверяется сбалансированным, упорядоченным образом.

    Когда Франк и его коллеги изучили нейронную активность во время тета-ритмов более тщательно, они обнаружили, что первая часть каждого цикла соответствует текущему местоположению крысы, а вторая часть репрезентирует левую или правую альтернативу. Весь паттерн выглядит примерно так: текущее местоположение, возможность идти налево, текущее местоположение, возможность идти направо, и так далее.

    Поддержание доступности всех вариантов действий

    Эксперименты с крысами выявили и другие интригующие паттерны. Например, исследователи обнаружили, что во время тета-ритмов происходят не одни лишь переключения с левой возможности на правую и наоборот. По-видимому, иногда отдельные циклы включают возможность изменения маршрута на обратный. Это открытие озадачило учёных, ибо у крыс, вроде бы, не было необходимости рассматривать данный вариант.

    По мнению Кеннета Кея (Kenneth Kay), доктора наук из Колумбийского университета (Columbia University) и первого автора статьи в Cell

    , отмеченный факт противоречит представлению о том, что гиппокамп всего лишь предсказывает, с чем предстоит столкнуться животному. «Это — свидетельство того, что циклическая структура, возможно, является универсальным способом связывания различных вещей, которые кодирует гиппокамп».

    В данном случае, считает Франк, «дело выглядит так, будто в развёрнутом виде представлено следующее размышление: „Что произошло бы, пойди я другим путём, и не стоит ли повернуть назад?“»

    Поэтому возникает впечатление, что тета-ритм преследует более общую цель, когда нужно кодировать гипотетические предположения. У каждого цикла, говорит Марк Брандон (Mark Brandon), невролог из Университета Макгилла (McGill University), не принимавший участия в исследовании, «своё особое содержание». «Это может быть задача „повернуть налево“ или „повернуть направо“. Но, если подойти к делу более широко, можно говорить о том, что в каждой 125-миллисекундной порции тета-колебаний закодировано какое-то конкретное воспоминание или произошедшее конкретное событие».

    Редиш, который не участвовал в данном исследовании, согласен с Брандоном. «Это не просто репрезентация пространства, а в некотором роде структура эпизода, — утверждает он. — Это поистине размышление об имеющихся вариантах действий».

    Возможно, говорят исследователи, тета-ритм является фундаментальной вычислительной единицей, которая используется гиппокампом для рассмотрения таких абстрактных вариантов. В большинстве случаев содержание цикла, скорее всего, основано на опыте, что позволяет животному быстро и гибко реагировать на изменяющуюся среду — скажем, при бегстве от хищника. Однако, о.

    Эта возможность требует видеть в гиппокампе не столько область головного мозга, которая посредством своих функций, связанных с памятью, помогает принимать решения, сколько структуру научения, порождающую образы воображаемого будущего и осуществляющую их отбор, моделируя тем самым варианты действий, чтобы другие области мозга могли их оценивать и использовать. Выяснить, как всё это работает, по-видимому, можно лишь в том случае, если рассматривать в качестве отправной точки тета-ритмы.

    Эти порции времени, длина которых — доли секунды, возможно, имеют исключительно важное значение и для осмысления других когнитивных процессов и неврологических состояний. Часто исследователи нервных процессов учитывают лишь среднюю клеточную активность, наблюдавшуюся в ходе эксперимента; работа команды Франка демонстрирует важность анализа информации, уместившейся в чрезвычайно малых промежутках времени.

    Сейчас Франк и его коллеги изучают механизм, порождающий наблюдавшиеся ими чередующиеся паттерны, и то, как в процессе принятия решений эта активность влияет на другие части головного мозга. Кроме того, учёные проводят эксперименты в лабиринте, требующем осуществлять выбор из более чем двух сценариев. Хотя крысиные ритмы головного мозга отличаются от человеческих, исследователи надеются, что полученные ими результаты можно будет экстраполировать на многие виды живых существ.

    «Пока что наши знания о тонкой временнóй структуре познания и воображения имеют поверхностный характер, — говорит Кей. — Размышлять на эту тему — весьма увлекательное занятие».

    Дельта-ритм

    Дельта-ритм (δ-ритм) — частота колебания варьируется от 1 до 4 Гц. амплитуда расположена в пределах 20-200 мкВ (высокоамплитудные волны).

    Общая характеристика.

    Дельта-ритм (медленные волны) связан с восстановительными процессами, особенно во время сна, и низким уровнем активации. При многих неврологических и других нарушениях дельта-волны заметно усилены. Избыток усиленных дельта-волн практически гарантирует наличие нарушений внимания и других когнитивных функций. Возникает при естественном и наркотическом сне, а наблюдается так же, как при регистрации от участков коры, граничных с областью, пораженной опухолью.

    Тета-ритм

    Тета-ритм (θ-ритм) — частота колебания данного ритма составляет от 4 до 8 Гц. Амплитуда находится в пределах от 20 до 100 мкВ. Регистрируется во фронтальных зонах и гиппокампе.

    Общая характеристика.

    Тета-волны появляются тогда, когда спокойное, расслабленное бодрствование переходит в сонливость. Колебания в головном мозге становятся более медленными и ритмичными. Это состояние называется еще «сумеречным», поскольку в нем человек находится между сном и бодрствованием. В норме тета-волны связаны с изменением состояния сознания. Часто такое состояние сопровождается видением неожиданных, сноподобных образов, сопровождаемых яркими воспоминаниями. Большинство людей засыпают, как только в головном мозге появляется заметное количество тета-волн.

    Тета-ритм связан с поисковым поведением, усиливается при эмоциональном напряжении, часто наблюдается при психотических нарушениях, состояниях спутанности сознания, сотрясениях мозга.

    Высокий уровень тета-ритма может показывать состояние сонливости и утомления, что может быть проявлением астенического синдрома, хронического стресса.

    Частоты или ритмы мозга человека: преимущества, недостатки, управление

    Наш мозг, как показывают многочисленные исследования, в зависимости от вида деятельности, которой мы заняты, и состояния, в котором мы находимся, работает на различных частотах. То есть, это электромагнитные волны, которые испускает наш мозг во время своей работы, и, в зависимости от того, насколько мы активны в тот или иной момент времени, спим мы, или бодрствуем, эти волны могут иметь различную частоту. Ученые считают, что благодаря излучению электромагнитных волн, наш мозг синхронизирует работу между отдельными частями, и, в зависимости от того, какие частоты мозга преобладают в тот или иной момент времени, мы по-разному решаем стоящие перед нами задачи, по-разному себя чувствуем и ведем. А главное, мы можем управлять тем, какие ритмы мозга появляются в нашей голове, и можем получить те или иные преимущества волновой активности мозга.

    В этой статье вы найдете краткое описание гамма, бета, альфа, тета и дельта частот, а также таблицу с преимуществами преобладания той или иной частоты мозга, недостатками излишней активности частот, а также способы повышения активности частот мозга.

    Гамма волновая активность мозга.

    Гамма мозговые волны находятся в диапазоне частот 38 – 70 Гц (в некоторых источниках 30 – 100 Гц), имеют крошечную, почти незаметную амплитуду. Обычно эти волны связаны с повышенным уровнем сострадания и чувством счастья, они дают другой взгляд на реальность и увеличивают умственные способности. Их можно найти практически в любой части нашего мозга, где они служат связующим механизмом между всеми его частями и помогают улучшить память и восприятие. Это самая высокая частота, на которой работает мозг. Преобладать эта частота начинает, когда вы усиленно работаете над решением сложных логических или математических задач.

    Бета волновая активность мозга.

    Бета мозговые волны считаются «быстрыми мозговыми волнами», благодаря этим волнам обеспечивается активное состояние мозга, большей активности мозг достигает с преобладанием гамма волн. Когда вы находитесь в бодрствующем состоянии бета-волны являются преобладающей частотой работы мозга, а если быть точнее то, они преобладают в левом полушарии. Частота бета-волн находится в пределах 12-38 Гц. Бета режим мозга считается нормальным для взрослых людей, это состояние бодрствования, в котором мы пребываем в течение практически всего дня, когда не спим. Считается, что чем ниже частота работы мозга, тем менее активно вы способны решать задачи.

    Альфа волновая активность мозга.

    Мозг в состоянии альфа активности считается расслабленным, я бы даже сказал, это лёгкое расслабление – состояние между сном и бодрствованием. Альфа волны расположены в диапазоне от 8 до 12 Гц, и обычно генерируются в правом полушарии, либо синхронно распределены между правым и левым полушарием. Человек входит в состояние альфа во время расслабления разума и тела, при отсутствии стресса и беспокойных мыслей. Альфа волны доминируют в мозгу людей, полностью расслабленных, творческих и с ясным умом, также это обычное состояние для детей. Люди с преобладающей альфа-частотой, обычно, мечтательны, у них хорошо развито воображение. Закройте глаза, расслабьте тело, и в вашей голове начнут рождаться альфа-волны.

    Тета волновая активность мозга.

    Тета мозговая активность считается следующим за альфа-активностью расслабленным состоянием вашего мозга, обычно эта активность проявляется во время, когда мы видим сновидения. Диапазон частот тета волн составляет от 4 до 8 Гц, более всего тета частоты генерируются правым полушарием. Тета волны начинают появляться в большем количестве, когда мы наименее эмоциональны, расслаблены, интенсивно мечтаем или видим сны. Как правило, тета активность выше у людей с синдромом дефицита внимания, а также у детей, чуть меньше, чем у детей, тета-волн в мозге творческих людей.

    Дельта волновая активность мозга.

    Дельта мозговые волны считаются наиболее низкими мозговыми частотами, на которых работает наш мозг, они находятся в диапазоне от 0.5 до 4 Гц. Подобно другим медленным мозговым частотам, дельта волны генерируются преимущественно в правом полушарии. Диапазон дельта мозговых волн связан с эмпатией, подсознанием и уменьшенным чувством осознания. Мы впадаем в глубокий сон, когда дельта волны начинают преобладать над другими частотами в нашем мозге, поддерживать дельта-волновую активность в бодрствующем состоянии практически невозможно, однако этих волн становится больше, когда мы медитируем, или находимся в полусонном состоянии.

    Мю-ритм

    Мю-ритм (μ-ритм) — часто колебания ритма от 8 до 13 Гц. Амплитуда обычно не превышает 50 мкВ. Регистрируется в роландической области, то есть соответственно распределению бета-ритма (локализован в области Роландовой борозды).

    Общая характеристика.

    Имеет параметры, сходные с альфа-ритмом, но отличается формой волн, имеющих округленные вершины и поэтому похожи на арки. Наблюдается у 10-15 % индивидуумов. Связан с тактильным и проприоцептивными раздражениями и воображением движения. Активируется во время умственной нагрузки и психического напряжения.

    Тау-ритм, лямбда-ритм, сонные веретена

    Частота колебания тау-ритма (τ-ритма) лежит в пределах от 8 до 13 Гц, частоты колебания лямбда-ритма (λ-ритма) и сонных веретен совпадает и находится в пределах от 12 до 14 Гц. Регистрация тау- и лямбда- ритмов происходит в области височной коры головного мозга. Сонные веретена регистрируются по всей коре головного мозга, однако наиболее выражены в центральных отведениях.

    Общая характеристика

    Тау-ритм отвечает блокадой на звуковые стимулы. В свою очередь сонные веретена представляют собой своеобразные вспышки активности.

    Соотношение ритмов

    Когда человек возбужден или насторожен, альфа-волны замещаются низковольтными нерегулярными быстрыми колебаниями. Увеличение бета-активности при снижении альфа-активности может свидетельствовать о росте психоэмоционального напряжения, появлении тревожных состояниях (при закрытых глазах). Снижение альфа-ритма, повышение тета-ритма свидетельствует о проявлении депрессии (при закрытых глазах).

    Усиление бета-составляющей и одновременное ослабление тета-составляющей эффективно при различных эпилептических синдромах, при синдроме нарушения внимания и гиперактивности, постинсультных нарушениях (спастичность, парезы, плегии), посттравматических синдромах и др.

    Тета- и дельта-колебания могут встречаться у бодрствующего человека в небольших количествах и при амплитуде, не превышающей амплитуду альфа-ритма. Патологическими считаются содержание δ и θ, которые превышают по амплитуде 40 мкВ и занимают более 15 % времени регистрации.

    Как не сломать часы

    А что же совы и жаворонки — у них часы настроены по-разному? На самом деле мы не знаем. Может быть, есть еще и «голуби» — люди, активные днем, но сонные утром и вечером. Зато точно известно, что, какой бы птицей ты ни был, спать нужно ночью, а бодрствовать днем. Так мы запрограммированы генетически, жить иначе — значит укорачивать жизнь.

    Особенно вредно постоянно менять свой распорядок. Например, ученые из Мичиганского университета изучили базу данных проекта Nurses Health Study — многолетнего исследования здоровья более 120 тысяч американских медсестер — и выяснили, что сменная работа (то в день, то в ночь) повышает риск ишемического инсульта на 4% каждые пять лет. Другие исследования, основанные на этих же данных, показали, что работа в ночную смену не менее трех ночей в месяц в течение 15 и более лет может повысить риск развития колоректального рака, а также рака груди.

    Причина — десинхроноз, то есть рассогласование биологических ритмов, которое является фактором риска развития сердечно-сосудистых и онкологических заболеваний. Десинхроноз сопровождается длительной повышенной усталостью, снижением работоспособности и нарушениями сна.

    Однократный десинхроноз известен каждому, кто испытывал джетлаг — синдром, возникающий при резкой смене часового пояса, когда человек пересекает больше трех-четырех временных зон. После него наступает этап ресинхронизации — когда биологические ритмы организма подстраиваются под новые условия. Интересно, что, если перелет был с востока на запад, средняя скорость восстановления составит 92 минуты в сутки, а если с запада на восток — она будет в полтора раза ниже, 57 минут в сутки. Получается, адаптироваться при перелете на восток труднее.

    Рассинхронизацию наш организм чувствует и когда мы коротаем время со смартфоном. Именно голубая, коротковолновая часть цветового спектра подавляет выработку мелатонина. На голубой свет реагирует фотопигмент меланопсин в клетках сетчатки глаза — именно от него зависит мнение мозга о том, ночь сейчас или день. При красном свете мозг не понимает, что на улице день. Но экраны гаджетов как раз излучают яркий и холодный голубой свет, понапрасну подбадривая мозг среди ночи.

    Рейтинг
    ( 1 оценка, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]