Физкультура как средство улучшения мозговой активности

Ритмы биоэлектрической активности

Нейроны головного мозга имеют собственные электрические волны, которые можно зарегистрировать при помощи электроэнцефалограммы. Эта процедура позволяет узнать многое о состоянии здоровья человека.

Биоэлектрические ритмы разделяют на несколько видов по частоте и амплитуде:

  1. Альфа-волны. Этот тип волн появляется, когда человек мечтает. Они связаны с образным мышлением. Такое состояние появляется у человека, когда он расслаблен, занимается йогой или медитацией. В эти периоды картинки в голове становятся намного ярче, а границы отчетливее. В таком состоянии мозг способен быстрее воспринимать новую информацию. Частота альфа-волн составляет 8-13 Гц.
  2. Бета-волны. Этот тип волн преобладает в то время, когда человек бодрствует. Он характеризуется двигательной активностью. В этот период активизируется левое полушарие мозга. Переизбыток бета-волн можно заметить по поведению людей. В этом случае оно характеризуется повышенной эмоциональностью и перевозбуждением. Депрессия и состояние апатии говорят о недостатке бета-волн в мозге. Люди с преобладанием ритма этих волн часто зависимы от разнообразных вредных привычек, таких как алкоголь, курение и наркотики. К вечеру волновая активность снижается. Частота бета-волн составляет 14-20 Гц.
  3. Гамма-волны. Преобладание этих биоэлектрических ритмов вызывает состояние гиперсознания. Обычный рассудок уходит на второй план. Это состояние в народе называется вдохновением. Частота ритма этих волн – 21 -30 Гц.
  4. Дельта-волны. Этот ритм имеет самую низкую частоту, которая составляет 1-4 Гц. Люди, в чьем мозге чаще всего активизируются дельта-волны, отличаются повышенной интуицией. Также их наличие помогает людям лучше ориентироваться в пространстве. Переизбыток дельта-волн заставляет человека испытывать чувство вины, даже если он не причастен к происшедшему.
  5. Тета-волны. Подобный ритм регистрируется в состоянии медитации или во сне со сновидениями. Именно в этом состоянии некоторые представители человечества видят пророческие сны. Картинки, возникающие в голове, более размытые и несут глубокий смысл. Большое количество людей лишены активности волн этого типа. Частота ритма составляет 4-8 Гц.

Высокие частоты мозга

К высокочастотной активности мозга относятся, прежде всего, бета-ритмы. Диапазон бета-ритмов достаточно широк, поэтому в нейрофидбэке его принято разделять на 3 составляющих: нижняя бета (12-15 Гц), бета (15-22 Гц) и верхняя бета (23-35 Гц).

Нижняя бета (12-15 Гц)

Нижняя бета является одним из наиболее интересных ритмов, поскольку включает в себя сенсомоторный ритм (СМР), в случае если данная активность регистрируется в области сенсомоторного кортекса (между C3 и C4). В основе низкой беты лежит тот же самый механизм прохождения сигнала в петле таламокортикального цикла, который производит и альфа-ритм. Т.е. низкая бета также является частотой относительного бездействия мозга.

Сенсомоторный ритм вызвал значительный интерес у ученых еще более 30 лет назад, когда доктор Барри Стерман, изучавший СМР у кошек, случайно обнаружил, что кошки, которых дополнительно обучали производить СМР, оказались гораздо более устойчивыми к воздействию токсина метилгидразина. Стерман идентифицировал СМР как ритм бездействия моторной системы мозга и охарактеризовал его как показатель намерения оставаться неподвижным.

В экспериментах по изучению токсичного воздействия авиационного топлива кошки, прошедшие курс тренировки СМР, показали значительно меньшую подверженность судорогам, которые вызывал токсин. Это привело к дальнейшим исследованиям СМР-тренинга, как средства уменьшения эпилептических приступов у детей. Помимо антисудорожного воздействия СМР-тренинг показал значительную пользу при решении большого количества проблем, таких как бессонница, тики, тремор, а также в целом зарекомендовал себя как метод значительного повышения сопротивляемости организма любым видам стресса.

Благодаря указанным свойствам за последние десятилетия СМР-тренинг все больше находит применение в клинической практике. По сути, данный вид тренинга дает возможность медикам воздействовать на психофизиологическое состояние пациентов на самом фундаментальном уровне, а не фокусироваться на работе с симптомами.

У взрослых СМР обычно находится в диапазоне частот между 12 и 15 Гц. Иногда этот диапазон может быть смещен в большую или меньшую сторону. Например, у 8-летних детей диапазон альфы может быть ближе к 6,5 – 9,5 Гц, а СМР соответственно смещен к 9-12 Гц.

Лучший способ установить диапазон СМР – эмпирический. Если диапазон СМР выбран правильно, то при его тренировке обычно наблюдается расслабление тела, значительное снижение мышечного тонуса и зачастую сонливость. Если же реакция на тренировку СМР отсутствует, то необходимо постепенно изменять тренируемый диапазон до получения желаемого ответа.

Сенсомоторный ритм также называется “сонными веретенами”. Он появляется в начальной стадии медленного сна, которая следует непосредственно за дремотой. Способность мозга оставаться вне беты, производить синхронные частоты отдыха, а при необходимости снова десинхронизироваться в бету обеспечивает в том числе и способность спать крепко и просыпаться отдохнувшим. В случае бессонницы тренировка СМР часто приводит к засыпанию во время тренировочной сессии. Однако даже в состоянии сна тренировка СМР продолжает оказывать благотворный эффект.

Бета-ритм (15-22 Гц)

Бета-волны обычно ассоциируются с сознательным мышлением и по своей сути указывают на активацию мозга и взаимодействие различных зон мозговой коры. Поскольку такое взамодействие обычно происходит между близко расположенными зонами коры, бета-активность имеет более локализованный характер, чем низкочастотная активность мозга.

Бета-тренинг достаточно широко используется в нейрофидбэке для тренировки активации различных зон мозга. В случаях, когда недостаток бета-активности очевиден, и имеющиеся проблемы относятся к недоактивированности мозга, бета-тренинг может быть эффективен для активации проблемных зон и нормализации мышления и поведения. Бета также используется в тренировке достижения пиковой производительности, которая может применяться даже при отсутствии каких-либо проблем, для улучшения скорости мышления и способности сосредоточения.

По своей сути бета-ритм антагонист альфа-ритма. Чем больше активность бета-ритма в какой-либо области мозга, тем менее мозг способен генерировать альфа-ритм в данной области. Именно поэтому тренинг альфа-ритма с закрытыми глазами обычно также включает подавление бета-ритма.

Для большинства людей полезным диапазоном бета-частот является 15-22 Гц. Преобладающая активность в более высоком диапазоне может ощущаться как возбуждение и тревожность. Также тревога и беспокойство могут ощущаться в случае, если уровень беты в правом полушарии больше, чем в левом. Если уровень беты значительно превосходит уровень теты, это является индикатором того, что мозг пытается оградить сознание от подсознательного материала.

Верхняя бета (23-35 Гц)

Когда человек чем-либо обеспокоен и не может остановить мыслительный процесс, на ЭЭГ это обычно проявляется увеличением активности в диапазоне верхней беты. Активность в данном диапазоне может тренироваться только в сторону уменьшения и не наоборот. В норме мозг производит не много верхней беты, поскольку это чрезвычайно энергозатратно и может быть полезно только в случае возникновения какой-либо опасной ситуации, требующей быстрых решений и действий.

Наличие высокого уровня верхней беты в левой височной доле зачастую является результатом эмоционального пренебрежения и недостатка внимания со стороны родителей в детстве. Под влиянием данных факторов, или каких-либо психотравматичных событий, мозг часто развивает способность активировать эмоциональную и декларативную память независимо друг от друга. В результате даже при воспоминании позитивных событий активируется только левая височная доля, ответственная за повествовательную детальную память, а правая височная доля, ответственная за эмоциональную и чувственную память остается неактивной. С другой стороны при болезненных воспоминаниях такие люди могут активировать толко правую височную долю, вызывающую сильную эмоциональную боль, даже при отсутствии интеллектуального контекста для понимания этих воспоминаний. Но данная ситуация относится именно к случаю значительной асимметрии в активности височных долей в диапазоне верхней беты.

Гамма-ритм

Помимо бета-частот к высокочастотной активности мозга относится также и гамма-ритм, включающий в себя мозговую активность на частотах от 35 до 100 Гц. В некоторых источниках верхняя граница диапазона гамма-ритма указывается как 170 Гц и выше. В нейрофидбэке же обычно рассматривается только нижняя часть диапазона от 35 до 45 Гц.

Согласно наиболее распространенной теории синхронизация между нейронными элементами на частоте гамма-ритма является специальным механизмом нейронной кооперации, позволяющим интегрировать различные особенности одного и того же образа в единый объект восприятия. В результате этого процесса мозг собирает и интегрирует информацию, которая поступает от различных органов чувств, связывая их в единое целое. Согласно исследованиям гамма-ритм играет важную роль в процессе сознательной обработки информации и наблюдается при решении задач, требующих максимального сосредоточенного внимания.

Недавние исследования с тибетскими монахами показали связь между гамма-ритмом и состоянием медитации. Исследователи сравнивали мозговую активность группы монахов в состоянии медитации с мозговой активностью в группе начинающих медитаторов. И если в состоянии обычной медитации мозговая активность у обеих групп отличалась не сильно, то во время традиционной буддийской медитации сострадания нейронные структуры в мозге монахов начинали производить синхронный высокоамплитудный гамма-ритм. В группе начинающих медитаторов подобной мозговой активности не наблюдалось. В свете существующей теории о роли гамма-ритма можно предположить, что в состоянии медитации монахи способны переводить мозг в режим гораздо большего уровня восприятия, чем доступен обычному человеку.

Тренировка гамма-ритма в нейрофидбэке требует особо тщательного подхода, поскольку регистрируемая активность на гамма-частотах на самом деле может оказаться электромиографической активностью мышц головы и шеи. Тренировка гамма-ритма обычно производится в части повышения когерентности и синхронности.

Дезорганизация биоэлектрической активности

В некоторых случаях могут наблюдаться диффузные изменения БЭА мозга, которые могут влиять на общее состояние здоровья человека.

Причинами нарушений работы головного мозга могут быть:

  1. Сотрясения и травмы головного мозга. При средней степени тяжести не требуется специального лечения для восстановления волновых ритмов.
  2. Воспаления спинного и головного мозга. Как правило, диффузные изменения БЭА возникают при менингите.
  3. Радиоактивное облучение влечет изменения средней тяжести биоэлектрической активности мозга.
  4. Токсическое отравление. Для восстановления волнового ритма потребуется длительное лечение.
  5. Атеросклероз. В начальной стадии заболевания изменения волнового ритма не слишком заметны, но если болезнь прогрессирует, то происходит массовое отмирание клеток головного мозга, и нейронная проводимость заметно ухудшается.
  6. Общие изменения в структуре головного мозга, вызванные слабым иммунитетом.

Симптомами диффузных изменений могут служить:

  • частые головные боли;
  • головокружения;
  • невроз;
  • апатия;
  • депрессивное состояние;
  • рассеянность;
  • потеря интереса ко всему происходящему;
  • резкие перепады настроения;
  • быстрая утомляемость;
  • низкая самооценка;
  • медленная реакция;
  • резкие перепады артериального давления.

Последствия диффузных изменений

Если симптомы нарушений были замечены на ранней стадии, и вовремя было назначено правильное лечение, то в будущем не возникнет проблем со здоровьем. Однако если человек долгое время игнорировал признаки диффузных изменений, то в дальнейшем это может отразиться в виде:

  • психоэмоциональных заболеваний;
  • судорог;
  • образования отеков тканей;
  • нарушения моторики;
  • отсталости в развитии;
  • низкого уровня иммунной защиты.

Игнорирование симптомов и отсутствие лечения могут спровоцировать появление эпилепсии.

Методы диагностики

Если человек заметил признаки дезорганизации мозговой деятельности, то ему необходимо обратиться к врачу и пройти обследования, которые помогут выявить отклонения, а также проконсультироваться с ним о том, как повысить активность мозга.

Основными методами диагностики диффузных изменений биоэлектрической активности головного мозга являются:

  1. Осмотр. Первое обследование, которое обязан провести специалист. Изучение внешних симптомов может рассказать о многих аномалиях.
  2. Магнитно-резонансная томография. Благодаря этому обследованию возможно обнаружение новообразований, являющихся причиной дезорганизации БЭА мозга. При введении специального препарата внутривенно на снимке можно отследить общее состояние сосудов, которые так же могут повлечь диффузные изменения в головном мозге.
  3. Электроэнцефалография. Данный вид диагностики позволяет в полной мере отследить волновые ритмы в мозге и выявить множество отклонений.

Основным видом диагностирования нарушения биоэлектрической активности является электроэнцефалография. К голове пациента подключаются специальные датчики, которые фиксируют реакцию головного мозга на разнообразные внешние раздражители. Все показатели отражаются на бумаге в виде волн. По результатам ЭЭГ можно определить область головного мозга, в которой обнаружены диффузные изменения БЭА и степень ее поражения.

Нагрузки, которые выполняются при ЭЭГ:

  • воздействие светом;
  • медленное открытие или закрытие глаз;
  • специальная техника дыхания;
  • звуковые импульсы.

ЭЭГ не требует специальной подготовки. Перед обследованием необходимо:

  • не употреблять алкоголь в течение 2-х дней до ЭЭГ;
  • не иметь острых респираторных заболеваний;
  • не принимать большое количество еды;
  • не курить за 2 часа до начала обследования;
  • отказаться от приема некоторых медикаментов.

Несмотря на то, что процедура может выглядеть весьма опасно из-за большого количества проводов и датчиков, нужно знать, что ЭЭГ полностью безопасно для здоровья человека.

Физическая активность и мозг

Зачем мы занимаемся бегом, аэробикой, плаванием? Чтобы лучше выглядеть, сбросить лишний вес, чтобы сосуды и сердце были в порядке… И вряд ли кто-то ходит в фитнес-клуб, чтобы улучшить память или внимание. А ведь давно известно: физические упражнения благотворно влияют не только на тело, но и на психику. Казалось бы, всё очевидно: если человек не злоупотребляет сидячим образом жизни, он меньше болеет, и мозгу от этого только польза. Но связь между физическими упражнениями и психическими функциями, как показали исследования последних лет, может быть более тесной и непосредственной.

Фото: Syda_Productions/ ru.depositphotos.com.

Исследований тут масса. Например, в обзорной работе, опубликованной в «British Journal of Sports Medicine» несколько месяцев назад, утверждается, что возрастные ухудшения в когнитивных функциях у людей старше пятидесяти лет можно затормозить с помощью систематической физической активности. Пожилые люди, занимающиеся аэробикой в сочетании с упражнениями на сопротивление, лучше справляются с психологическими тестами, в которых нужно быстро переключаться с одной задачи на другую, тактически мыслить, сосредоточиваться и активно использовать рабочую память (так называют отдел памяти, работающий с актуальной информацией; подробно о том, что такое рабочая память и как она работает, см. «Наука и жизнь» № 7, 2021 г.). Людей старшего возраста привлекают к таким исследованиям по вполне понятным причинам: с возрастом мозг естественным образом слабеет, и потому становится проще оценивать факторы, которые тормозят этот процесс. Однако похожие данные есть и для молодых людей, и даже для детей. Так, в статье в журнале «Medicine & Science in Sports & Exercise» (апрель 2021 года) говорится, что у детей в возрасте от 9 до 11 лет физическая подготовка и хорошая рабочая память идут рука об руку: если у ребёнка развиты мышцы, то и тесты на память он будет выполнять хорошо и, что немаловажно, демонстрировать успехи в учёбе. (Всё это, конечно, сильно расходится с привычным представлением о глуповатом школьном силаче и умном, но хилом «ботанике».)

В статье в журнале «Neurology» за 2021 год отмечалось, что разница в биологическом возрасте мозга между теми, кто регулярно занимается физическими упражнениями, фитнесом, спортом, и теми, кто физически не активен, может составлять целых десять лет. В то же время важно, что именно человек делает. Несколько лет назад исследователи из университета Питтсбурга (США) сравнили, как в течение года изменялось состояние мозга у пожилых людей, которые либо ходили три раза в неделю на пешую прогулку быстрым шагом (довольно продолжительную — от 30 до 45 минут), либо выполняли упражнения на растяжку. Оказалось, что у тех, кто гулял, некоторые области префронтальной коры и гиппокампа, отвечающие за планирование и память, увеличились в размерах. Увеличение было небольшое, всего 2—3%, и всё же его хватило, чтобы перекрыть возрастное «съёживание» мозга. Гулявшие участники эксперимента показали хорошие результаты и в тестах на пространственную память. У тех же, кто в течение года делал растяжки, гиппокамп продолжил уменьшаться, как это обычно и происходит в пожилом возрасте.

Есть сведения, что физическая активность помогает уменьшить когнитивные нарушения при шизофрении и при болезни Паркинсона; в частности, у больных шизофренией за несколько месяцев вполне умеренных упражнений на 12% увеличивался гиппокамп. Наконец, те, кто занимается спортом, прекрасно знают, что физические упражнения снимают стресс и дают ощущение лёгкой эйфории.

Но почему всё это происходит? Почему благодаря физической активности исчезает стресс, улучшается память, увеличиваются какие-то области мозга? Здесь есть несколько объяснений. Начнём с эмоций и стресса.

Считается, что чувство эйфории, возникающее после длительной физической нагрузки, появляется благодаря эндоканнабиноидам — нейромедиаторным молекулам, которые синтезируются в мозге и действуют на нейроны различных нервных центров. У эндоканнабиноидов много функций: они участвуют в регуляции аппетита, влияют на память, обучение и эмоции и, кроме того, служат своеобразным внутренним обезболивающим, к которому мозг прибегает в самых разных случаях. Физические упражнения стимулируют выброс нейромедиаторов, снижающих тревожность и вызывающих лёгкое чувство радости.

Но есть и другие антистрессовые механизмы, которые включаются при занятиях спортом. Известно, что стресс и депрессия вызывают атрофию нейронов и синапсов: связи между нервными клетками слабеют и рвутся, а новые не образуются. Нервная клетка становится «неконтактной» и ненужной, общее разнообразие нервных цепочек уменьшается, а уменьшение числа нервных контуров в свою очередь сказывается на когнитивных способностях и на умении находить выход из трудных ситуаций. Два года назад исследователи из университета Джорджии (США) показали, что у крыс, которые ведут активный образ жизни, нейроны успешно сопротивляются стрессовому эффекту, сохраняя способность формировать всё новые и новые клеточные контакты. И происходит это благодаря нейропептиду галанину, уровень которого заметно увеличивается после физических упражнений и увеличивается как раз в зонах мозга, отвечающих за борьбу со стрессом. Антистрессовый эффект «фитнеса», обеспеченный галанином, проявлялся и в поведении крыс: животные, несмотря на неприятные обстоятельства, которые им устраивали в эксперименте, были активны и любопытны — иными словами, не очень переживали из-за неприятностей и не тонули в стрессе.

Если говорить о когнитивных функциях и об увеличении некоторых зон мозга, то одно объяснение напрашивается само собой: упражнения ведь заставляют сердце чаще биться, следовательно, в мозге улучшается крово-снабжение и он начинает работать лучше. В пользу такой гипотезы говорят результаты исследователей из Техасского университета в Далласе (США): в 2013 году они опубликовали в журнале «Frontiers in Aging Neuroscience» работу, в которой утверждали, что физические упражнения стимулируют кровоснабжение задней поясной коры и гиппокампа. И там и там усиливался обмен веществ и повышалась активность нейронов. Участники эксперимента, регулярно упражнявшиеся в спортзале, лучше проходили тесты на память, причём изменения происходили именно в такой последовательности: сначала улучшался кровоток, потом — «когнитивка».

Но кровь — это ещё не все. Клетки в нашем теле сами по себе не растут, им нужны молекулярные сигналы — специальные белки, которые действуют на клеточные рецепторы, подталкивая клетки к тем или иным действиям. Белки, стимулирующие рост и развитие нейронов, называются нейротрофинами, и самый активный среди них — BDNF (brain-derived neurotrophic factor, нейротрофический, или нейротропный, фактор мозга). BDNF включает гены, контролирующие рост нервных клеток и формирование новых синапсов, а значит, и нервных цепочек, и он особенно активен в гиппокампе и коре, то есть в областях, отвечающих за обучение и память. Было замечено, что и у животных и у человека уровень BDNF резко возрастает при физических упражнениях, что со скачком BDNF происходит прирост гиппокампа и улучшение когнитивных функций. Эксперименты на мышах показали: уровень сигнального белка остаётся высоким ещё в течение нескольких дней после «фитнеса». В 2013 году в журнале «Cell Metabolism» вышла статья, авторы которой описывали цепочку сигналов от мышц к мозгу. Исследователям удалось определить белок, выделяющийся из работающих мышц, который, действуя через несколько посредников, даёт сигнал специальным клеткам мозга синтезировать этот самый BDNF. То есть мышцы сами по себе дают мозгу стимулирующий сигнал.

Любопытно, что по одной из гипотез человеческий мозг эволюционировал по мере того, как человек становился физически более выносливым. Известно, что у более выносливых животных мозг больше, чем у менее выносливых (разумеется, если мы сравниваем животных примерно одинакового размера). С другой стороны, есть эксперименты по размножению грызунов-«атлетов». Особей, которые неутомимее прочих бегали в беличьем колесе, неоднократно скрещивали между собой, и в результате у потомков появлялись любопытные молекулярные особенности — у них повышался уровень разнообразных ростовых факторов, включая BDNF. В 2012 году в журнале «Proceedings of the Royal Society Biology B» появилась статья с описанием следующего варианта развития событий. Когда наши предки стали охотиться, наиболее удачливыми оказывались те, кто мог долго и упорно бежать, преследуя раненую добычу. Очевидно, самые выносливые особи получали эволюционное преимущество: они лучше питались, приносили добычу группе, пользовались популярностью у противоположного пола и т. д. Их гены переходили из поколения в поколение, в том числе и ген, обеспечивающий высокий уровень BDNF. Белок поначалу работал в мышцах, помогая расти нервам в них (вслед за усилением мышечной ткани должна была усилиться и её иннервация). Однако потом избыток BDNF добрался до мозга, и он резко «пошёл в рост». Конечно, были и другие важные эволюционные факторы, сделавшие человека «мозговитым», но связь мышц и мозга через BDNF вполне могла сыграть свою роль.

Со временем у гена, кодирующего BDNF, стали появляться новые варианты, и сейчас эффект от нейротропного фактора, скорее всего, будет зависеть от того, в каком именно виде ген BDNF достался индивидууму. У этого гена есть особый вариант, который можно найти примерно у 30% людей, — у его носителей некоторые зоны мозга меньше, чем у других, а сам человек более предрасположен к психоневрологическим и нейродегенеративным болезням. Исследователи из Миланского университета обнаружили, что если в геноме есть такой особый ген BDNF, то физические упражнения не действуют против стресса и тревожности. (Учитывая роль белка BDNF в мозге, неудивительно, что от него зависит и стрессовая реакция.) Впрочем, физические упражнения влияют на активность целого ряда генов в мозге, многие из которых не имеют прямого отношения к синапсам и передаче нейронных импульсов. Так что придётся подождать, пока исследователи получат полную картину того, как мышцы действуют на мозг, хотя начать заниматься спортом можно уже прямо сейчас.

Словарик

Синапс — соединение между двумя нейронами или между нейроном и какой-то другой клеткой, где происходит передача нервного импульса с помощью веществ-нейромедиаторов разной природы.

Гиппокамп — область мозга, отвечающая за кратковременную память и превращение её в память долговременную. Кроме того, гиппокамп обеспечивает ориентацию в пространстве и участвует в формировании эмоций.

Префронтальная кора — отдел коры больших полушарий головного мозга, представляющий собой переднюю часть лобных долей. Префронтальная кора чрезвычайно тесно связана с большинством структур мозга, а её основная функция — управление мышлением в целом и регуляция поведения в соответствии с внутренними мотивами и планами.

Влияние питания на БЭА мозга

Для увеличения активности мозга необходимо поступление в организм таких витаминов и минеральных веществ, как:

  • йод;
  • цинк;
  • медь;
  • марганец;
  • витамины группы B;
  • витамин C;
  • кальций и др.

Для восполнения запасов этих веществ можно пить витаминные комплексы или БАД, но также эти соединения содержатся в различных продуктах питания:

  • морская и речная рыба;
  • цветная капуста;
  • яйца;
  • молоко, творог и сыр;
  • авокадо;
  • семена подсолнечника;
  • овсяная каша;
  • орехи;
  • диетическое мясо;
  • бананы и виноград;
  • сельдь;
  • картофель;
  • кунжут;
  • манго;
  • яблоки;
  • печень;
  • морская капуста;
  • сливочное масло.

Помимо этих продуктов питания необходимо обеспечивать организм нужным количеством воды. В сутки рекомендуется выпивать 1,5-2,5 литра чистой негазированной воды.

Как повысить

Каждый человек должен задуматься, как увеличить мозговую активность, так как от этого зависит уровень его жизни. Головной мозг, как и весь организм в целом, нуждается в постоянных тренировках. При их отсутствии наблюдается резкий упадок сил.

Повышение активности мозга можно обеспечить, выполняя следующие упражнения:

  1. В детстве всех часто заставляли учить стихотворения наизусть и не зря, ведь это является оптимальной нагрузкой для мозга. Для получения положительного результата достаточно раз в день учить по одному четверостишию.
  2. Разгадывание кроссвордов и разнообразных ребусов. Также в эту категорию можно отнести решение судоку. В течение дня необходимо разгадывать по 2-3 судоку или одному большому кроссворду.
  3. Играть в настольные игры.
  4. В походе за покупками напрягайте свой мозг, для этого достаточно в уме просчитывать общую стоимость своих покупок. Не обязательно, чтобы цифра была точной. Она должна быть приближенной.
  5. Любое непривычное действие для организма оказывает нагрузку для мозга. Так, например, во время чистки зубов можно поменять руку, обуваться с другой ноги, размешать сахар в чае при помощи левой руки.
  6. Во время прогулки нужно концентрировать свое внимание на человеке или каком-то предмете. Когда он пропадет из поля зрения, необходимо полностью воспроизвести его образ в голове и думать о нем.

Помимо умственных упражнений, необходимо выполнять и физические. Они позволяют организму расслабиться и снять нервное напряжение, а также снабжают головной мозг нужным количеством кислорода. Вечерняя пробежка улучшит общее состояние организма и поможет оставаться мозгам «светлыми». Такой вид физической нагрузки рекомендуется, если на следующий день назначена какая-либо важная встреча.

Что такое ЭЭГ и зачем она нужна

Ученые любят искать первое упоминание своей науки. К примеру, я видел статью, где всерьез утверждалось, что первые опыты по электрической стимуляции мозга были проведены в Древнем Риме, когда кого-то ударил током электрический угорь. Так или иначе, обычно, историю электрофизиологии принято отсчитывать примерно от опытов Луиджи Гальвани (XVIII век). В этом цикле статей мы попробуем рассказать небольшую часть того, что наука узнала за последние 300 лет про электрическую активность мозга человека, про то, какие профиты из всего этого можно извлечь.

Откуда берется электрическая активность мозга

Мозг состоит из нейронов и глии. Нейроны проявляют электрическую активность, глия тоже может это делать, но по-другому [], [], и мы на нее сегодня обращать внимания не будем.

Электрическая активность нейронов заключается в перекачивании между клеткой и окружающей средой ионов натрия, калия и хлора. Между нейронами сигналы передаются с помощью химических медиаторов. Когда медиатор, выделяемый одним нейроном, попадает на подходящий рецептор другого нейрона, он может открыть химически активируемые ионные каналы, и впустить в клетку небольшое количество ионов. В результате клетка немного меняет свой заряд. Если в клетку вошло достаточно много ионов (например, сигнал пришел одновременно на несколько синапсов), открываются другие ионные каналы, зависимые от напряжения (их больше), и клетка за считанные миллисекунды активируется целиком по принципу “все или ничего”, после чего возвращается в прежнее состояние. Этот процесс называется потенциалом действия.

Как ее можно зарегистрировать

Лучший способ записать активность отдельных клеток — воткнуть в кору электрод. Это может быть один провод, может быть матрица с несколькими десятками каналов, может быть штырь с несколькими сотнями, а может быть гибкая плата с несколькими тысячами (как тебе такое, илон маск ).

На животных это делают уже давно. Иногда по жизненным показаниям (эпилепсия, болезнь Паркинсона, полный паралич) делают на человеке. Пациенты с имплантами способны печатать текст силой мысли, управлять экзоскелетами, и даже контролировать все степени свободы промышленного манипулятора.

Выглядит впечатляюще, но в ближайшее время в каждую районную поликлинику, и, тем более, к здоровым людям, такие методы не придут. Во-первых, это очень дорого — стоимость процедуры для каждого пациента измеряется сотнями тысяч долларов. Во-вторых, имплантация электродов в кору — все-таки серьезная нейрохирургическая операция со всеми возможными осложнениями и поражением нервной ткани вокруг импланта. В-третьих, сама технология несовершенна — непонятно, что делать с тканевой совместимостью имплантов, и как предотвратить их обрастание глией, в результате чего нужный сигнал со временем перестает регистрироваться. Кроме того, обучение каждого пациента использованию импланта может занимать больше года ежедневных тренировок.

Можно не втыкать провода глубоко в кору, а аккуратно положить на нее — получится электрокортикограмма. Тут сигнал отдельных нейронов уже не зарегистрировать, но можно увидеть активность очень маленьких областей (общее правило — чем дальше от нейронов, тем хуже пространственное разрешение метода). Уровень инвазивности ниже, но все равно нужно вскрывать череп, поэтому этот метод используется в основном для контроля во время операций.

Можно положить провода даже не на кору, а на твердую мозговую оболочку (тонкий череп, который находится между мозгом и настоящим черепом). Тут уровень инвазивности и возможных осложнений еще ниже, но сигнал все еще довольно качественный. Получится эпидуральная ЭЭГ. Всем хорош метод, однако, тут все равно нужна операция.

Наконец, минимально инвазивный метод исследования электрической активности мозга — электроэнцефалограмма, а именно, запись с помощью электродов, которые находятся на поверхности головы. Метод самый массовый, сравнительно дешевый (топовые приборы стоят не дороже нескольких десятков тысяч долларов, а большинство в разы дешевле, расходники практически бесплатны), и имеет самое высокое временное разрешение из неинвазивных методов — можно изучать процессы восприятия, которые занимают считанные миллисекунды. Недостатки — низкое пространственное разрешение и шумный сигнал, который, однако, содержит достаточное количество информации для некоторых медицинских и нейроинтерфейсных целей.

На картинке с потенциалом действия видно, что у кривой есть две основных части — собственно, потенциал действия (большой пик) и синаптический потенциал (маленькое изменение амплитуды перед большим пиком). Логично было бы предположить, что то, что мы регистрируем на поверхности головы, является суммой потенциалов действия отдельных нейронов. Однако, на деле все работает наоборот — потенциал действия занимает около 1 миллисекунды и, несмотря на высокую амплитуду, через череп и мягкие ткани не проходит, а вот синаптические потенциалы за счет большей длительности, хорошо суммируются и регистрируются на поверхности черепа. Это было доказано с помощью одновременной записи инвазивными и неинвазивными методами. Также важно, что активность не каждого нейрона может быть зарегистрирована с помощью ЭЭГ (подробнее тут).

Важно, что в мозге находится около 86 миллиардов нервных клеток (о том, как это можно с такой точностью посчитать, читайте тут), и активность одного нейрона в таком шуме считать невозможно. Однако, какую-то информацию все равно вытащить можно. Представьте себе, что вы стоите в центре футбольного стадиона. Пока фанаты просто шумят и разговаривают между собой, вы слышите равномерный гул, но как только даже небольшая часть присутствующих начинает скандировать кричалку, ее уже можно довольно отчетливо расслышать. Точно так же и с нейронами — на поверхности черепа можно увидеть осмысленный сигнал, только если сразу большое количество нейронов проявляют синхронную активность. Для неинвазивной ЭЭГ это примерно 50 тысяч синхронно работающих нейронов.

Впервые идея померить напряжение на голове человека была реализована в 1924 году довольно интересной личностью. Первая запись ЭЭГ выглядела вот так:

Сложно понять, что означает этот сигнал, но сразу видно, что он не похож на белый шум — в нем заметны веретена колебаний высокой амплитуды и отличающейся частоты. Это альфа-ритм — самый заметный ритм мозга, который можно увидеть невооруженным взглядом.

Сейчас, конечно, ритмы ЭЭГ анализируются не на глаз, а математическими методами, самые простые из которых — спектральные.


Разбитый на полосы спектр Фурье электроэнцефалограммы (источник)

Всего есть несколько полос, в которых обычно анализируют ритмическую активность ЭЭГ, вот самые популярные:

8-14 Гц — Альфа-ритм. Представлен в основном в затылочных зонах. Сильно увеличивается при закрытии глаз, также подавляется при умственном напряжении и увеличивается при расслаблении. Этот ритм производится, когда возбуждение циркулирует между корой и таламусом. Таламус — своего рода маршрутизатор, который решает, как перенаправлять в кору потоки входящей информации. Когда человек закрывает глаза, ему становится нечего делать, он начинает генерировать фоновую активность, которая и вызывает альфа-ритм в коре. Кроме того, важную роль играет default mode network — сеть структур, которые активны во время спокойного бодрствования, но это уже тема для отдельной статьи.

Разновидность альфа-ритма, с которой его легко перепутать — мю-ритм. Он имеет схожие характеристики, но регистрируется в центральных областях головы, где находится моторная кора. Важная особенность — его мощность уменьшается, когда человек двигает конечностями, или даже думает о том, чтобы это сделать.

14-30 Гц — Бета-ритм. Больше выражен в лобных долях мозга. Увеличивается при умственном напряжении.

30+ Гц — Гамма-ритм. Может быть, где-то внутри мозга он и есть, но большая часть того, что можно записать с поверхности, происходит от мышц. Выяснили это следующим образом:

Нужно каким-то образом убрать мышечную активность с головы, чтобы записать ЭЭГ с мышцами и без. К сожалению, нет простого способа отключить мышцы на голове, не отключив их во всем теле. Берем ученого (никто другой на такое бы не согласился), накачиваем его миорелаксантом, в результате чего у него отключаются все мышцы. Проблема — если отключить все мышцы, в том числе диафрагму и межреберные, то он не сможет дышать. Решение — кладем его на ИВЛ. Проблема — он еще и говорить без мышц не может. Решение — наложим ему на руку жгут, чтобы туда не попадал миорелаксант, тогда он может этой рукой подавать сигналы. Проблема — если затянуть эксперимент, то рука отвалится. Решение — прекращаем эксперимент когда ученый перестает чувствовать руку, и надеемся, что все закончится хорошо. Результат — доля в спектре частот ЭЭГ больше 20 Гц на фоне миорелаксанта становится меньше в 10-200 раз, чем выше частота, тем выше падение.

1-4 Гц — Дельта-ритм. Выражен во время фазы, внезапно, дельта-сна (самый глубокий сон), также повышается при стрессе.

Кроме ритмической активности, в ЭЭГ есть еще вызванная. Если мы точно знаем, в какой момент мы показываем человеку стимул (это может быть картинка, звук, тактильное ощущение и даже запах), мы можем посмотреть, какая была реакция именно на этот стимул. Соотношение сигнал-шум такого ответа по отношению к фоновой ЭЭГ довольно низкое, но если мы покажем стимул, к примеру, 10 раз, нарежем ЭЭГ относительно момента предъявления и усредним, то можно получить довольно подробные кривые, которые называют вызванными потенциалами (не путать с потенциалами действия).

Это вызванный потенциал на звук. Подробности оставим психофизиологам — тут нам достаточно понимать, что каждый экстремум что-то да означает. При достаточном усреднении будут видны ответы структур начиная от слухового нерва (I) и заканчивая ассоциативной корой (P2).

Что с ней можно сделать

Сделать можно много чего, но сегодня мы сконцентрируемся на нейрокомпьютерных интерфейсах. Это системы анализа ЭЭГ в реальном времени, которые позволяют отдавать компьютеру или роботу команды без помощи мышц — самое близкое к телекинезу, что может предоставить современная наука.

Самое очевидное, что приходит в голову — сделать интерфейс на ритмической активности. Мы же помним, что альфа-ритма мало, когда человек напряжен, и много, когда он расслаблен? Вот и расслабляйтесь. Пишем ЭЭГ, делаем преобразование Фурье, когда мощность в окне вокруг 10 герц стала выше определенного порога, зажигаем лампочку — вот и контроль компьютера силой мысли. Тот же принцип может позволить управлять другими ритмами. За счет простоты и нетребовательности к оборудованию появилось достаточно много игрушек, работающих на этом принципе — Neurosky, Emotiv, тысячи их. В принципе, если хорошо постараться, человек может научиться приходить в нужное состояние, которое будет правильно классифицироваться. Проблема потребительских девайсов в том, что они часто пишут не очень качественный сигнал, и поголовно не умеют вычитать артефакты от движения глаз и мимических мышц. В результате появляется реальная возможность научиться управлять мышцами и глазами, а не мозгом (а подсознание работает так, что чем больше стараться этого не делать, тем хуже будет получаться). Кроме того, само соотношение сигнал-шум в ритмах довольно низкое, и интерфейс работает медленно и неточно (если получится правильно угадать состояние с точностью больше 70% — это уже достижение). Да и научная база по состояниям кроме расслабления и концентрации, мягко говоря, зыбкая. Тем не менее, при правильной реализации метод может иметь свое применение.

Важный подвид интерфейсов на ритмах — представление движений. Тут человеку предлагается не воображать что-то абстрактно расслабляющее, а представлять движение, скажем, правой руки. Если делать это правильно (а научиться правильному представлению сложно), можно выявить снижение мю-ритма в левом полушарии. Точность таких интерфейсов тоже крутится вокруг 70%, но они находят свое применение в тренажерах для восстановления после инсультов и травм, в том числе при помощи различных экзоскелетов, поэтому они все равно нужны.

Другой класс ЭЭГ-нейроинтерфейсов основывается на использовании вызванной активности всех сортов. Эти интерфейсы отличаются очень высокой надежностью, при удачном стечении обстоятельств приближающейся к 100%.

Самый популярный вид нейроинтерфейсов включает в себя потенциал Р300. Он возникает тогда, когда человек пытается выделить один нужный ему стимул среди многих ненужных.

К примеру, если вот тут пытаться посчитать, сколько раз загорится буква “А”, и при этом не обращать внимания на все остальные, то в ответ на этот стимул при усреднении мы увидим красную линию, а при усреднении всех остальных — синюю. Разница между ними заметна невооруженным взглядом, и обучить классификатор, который будет их различать, не составляет особого труда.

Такие интерфейсы обычно не очень красивые, и не очень быстрые (печать одной буквы займет около 10 секунд), но могут быть полезны полностью парализованным пациентам.

Кроме того, в ИМК-Р300 есть когнитивный компонент — мало просто смотреть на букву, надо активно обращать на нее внимание. Это позволяет, при выполнении определенных условий, делать на этой технологии довольно интересные игры (но это тема для другой статьи).

За счет того, что Р300 это когнитивный потенциал, для него не очень важно, что, собственно, показывают человеку, главное, чтобы он мог на это реагировать. В результате интерфейс будет работать, даже если буквы будут сменять друг друга в одной точке — это полезно для пациентов, которые не могут двигать глазами.

Есть и другие интересные вызванные потенциалы, в частности SSVEP (ЗВПУС) — потенциалы стабильного состояния. Если искать аналогии в области связи, то Р300 работает как рация — сигналы от разных стимулов разделяются по времени, а SSVEP это классический FDMA — разделение по несущей частоте, как в GSM-связи.

осторожно, эпилептические мигалки

Нужно показать человеку несколько стимулов, которые мигают с разными частотами. При выборе стимула, на него достаточно внимательно посмотреть, и через несколько секунд его частота магическим образом окажется в зрительной коре, откуда ее можно вытащить корреляционными или спектральными методами. Это быстрее и проще, чем считать буквы для Р300, но долго смотреть на такое мигание тяжело.

Там, где есть FDMA, там самое место CDMA:

осторожно, еще более эпилептические мигалки

Серое — бинарная последовательнсть, цветное — вызванная ей активность во всех каналах, карта — распределение выраженности потенциала в ЭЭГ. Видно, что максимум на затылке — в зрительных областях

Можно модулировать мигание стимулов не частотами и фазами, а ортогогнальными бинарными последовательностями, которые точно так же окажутся в зрительной коре и отклассифицируются с помощью корреляционного анализа. Это может помочь немного оптимизировать обучение классификатора и ускорить работу интерфейса — на одну букву может уходить меньше 2 секунд. За счет удачного выбора цветов можно сделать интерфейс чуть менее вырвиглазным, хотя полностью от мигания избавиться не получится. К сожалению, когнитивный компонент тут не так сильно выражен — отслеживание движений глаз дает сопоставимые результаты, но технически проще, дешевле и удобнее.

Когда я говорю о том, насколько хорошо могут работать те или иные типы интерфейсов, приходится постоянно оперировать соотношением сигнал-шум. Действительно, вызванные потенциалы имеют низкую амплитуду — около 5 микровольт, при том, что фоновый альфа-ритм запросто может иметь амплитуду в 20. Такой слабый сигнал кажется довольно сложным для классификации, но на самом деле все это довольно просто, если правильно поставить эксперимент и хорошо записать ЭЭГ. Сейчас большинство академических исследований сосредоточено в области придумывания новых классификаторов, в том числе применения нейросетей, но довольно хорошего уровеня можно достигнуть уже с самыми простыми линейными классификаторами из scikit-learn. К примеру, хороший датасет с Р300 и кодом лежит здесь.

Нейрокомпьютерные интерфейсы — развивающаяся технология, выглядит как магия, особенно для неподготовленного человека. Однако в реальности это метод, в котором много неочевидных сложностей. Секрет здесь, как и с любой технологией, заключается в том, чтобы учитывать все ограничения и находить такие сферы ее применения, в которых эти ограничения не мешают работе.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]