Общая характеристика
Эволюционные процессы, которым подвергались многоклеточные организмы на протяжении столетий, привели к необходимости регулирования, а также координирования всех жизненных функций. Эти механизмы способствовали приспособлению особей к изменяющимся параметрам внешней среды. Итогом явилось то, что отделы ЦНС стали сложными по строению и функционированию.
По сути, центральная нервная система – это высокоорганизованная совокупность специальных структурных единиц, которые объединяют и координируют деятельность каждой ткани, системы и органа, как изнутри, так и при взаимодействии со средой извне. Она представлена двумя важнейшими органами – внутричерепным, а также внутрипозвоночным мозгом. Тогда как черепно-мозговые нервные волокна к ЦНС не имеют отношения. Это уже периферическая система иннервации.
В основном, относящиеся к головному и спинному мозгу функциональные единицы несут ответственность за восприятие информации от внешних/внутренних раздражителей, ее переработку и формирование адекватного ответа. Благодаря этой являющейся частью целого организма системе, и обеспечивается полноценное взаимодействие людей с миром вокруг – через память, мышление, эмоции, творческие процессы.
- 1. Основные принципы функционирования ЦНС. Строение, функции, методы изучения ЦНС
- 2. Нейрон. Оособенности строения, значение, виды
- 3. Рефлекторная дуга, ее компоненты, виды, функции
- 4. Функциональные системы организма
- 5. Координационная деятельность ЦНС
- 6. Виды торможения, взаимодействие процессов возбуждения и торможения в ЦНС. Опыт И. М. Сеченова
- 7. Методы изучения ЦНС
ЛЕКЦИЯ № 6. Физиология центральной нервной системы
1. Основные принципы функционирования ЦНС. Строение, функции, методы изучения ЦНС
Основным принципом функционирования ЦНС является процесс регуляции, управления физиологическими функциями, которые направлены на поддержание постоянства свойств и состава внутренней среды организма. ЦНС обеспечивает оптимальные взаимоотношения организма с окружающей средой, устойчивость, целостность, оптимальный уровень жизнедеятельности организма.
Различают два основных вида регуляции: гуморальный и нервный.
Гуморальный процесс управления предусматривает изменение физиологической активности организма под влиянием химических веществ, которые доставляются жидкими средами организма. Источником передачи информации являются химические вещества – утилизоны, продукты метаболизма (углекислый газ, глюкоза, жирные кислоты), информоны, гормоны желез внутренней секреции, местные или тканевые гормоны.
Нервный процесс регуляции предусматривает управление изменения физиологических функций по нервным волокнам при помощи потенциала возбуждения под влиянием передачи информации.
Характерные особенности:
1) является более поздним продуктом эволюции;
2) обеспечивает быструю регуляцию;
3) имеет точного адресата воздействия;
4) осуществляет экономичный способ регуляции;
5) обеспечивает высокую надежность передачи информации.
В организме нервный и гуморальный механизмы работают как единая система нейрогуморального управления. Это комбинированная форма, где одновременно используются два механизма управления, они взаимосвязаны и взаимообусловлены.
Нервная система представляет собой совокупность нервных клеток, или нейронов.
По локализации различают:
1) центральный отдел – головной и спинной мозг;
2) периферический – отростки нервных клеток головного и спинного мозга.
По функциональным особенностям различают:
1) соматический отдел, регулирующий двигательную активность;
2) вегетативный, регулирующий деятельность внутренних органов, желез внутренней секреции, сосудов, трофическую иннервацию мышц и самой ЦНС.
Функции нервной системы:
1) интегративно-коордиационная функция. Обеспечивает функции различных органов и физиологических систем, согласует их деятельность между собой;
2) обеспечение тесных связей организма человека с окружающей средой на биологическом и социальном уровнях;
3) регуляция уровня обменных процессов в различных органах и тканях, а также в самой себе;
4) обеспечение психической деятельности высшимие отделами ЦНС.
2. Нейрон. Оособенности строения, значение, виды
Структурной и функциональной единицей нервной ткани является нервная клетка – нейрон
.
Нейрон – специализированная клетка, которая способна принимать, кодировать, передавать и хранить информацию, устанавливать контакты с другими нейронами, организовывать ответную реакцию организма на раздражение.
Функционально в нейроне выделяют:
1) воспринимающую часть (дендриты и мембрану сомы нейрона);
2) интегративную часть (сому с аксоновым холмиком);
3) передающую часть (аксонный холмик с аксоном).
Воспринимающая часть.
Дендриты
– основное воспринимающее поле нейрона. Мембрана дендрита способна реагировать на медиаторы. Нейрон имеет несколько ветвящихся дендритов. Это объясняется тем, что нейрон как информационное образование должен иметь большое количество входов. Через специализированные контакты информация поступает от одного нейрона к другому. Эти контакты называются «шипики».
Мембрана сомы нейрона имеет толщину 6 нм и состоит из двух слоев липидных молекул. Гидрофильные концы этих молекул обращены в сторону водной фазы: один слой молекул обращен внутрь, другой – наружу. Гидрофильные концы повернуты друг к другу – внутрь мембраны. В двойной липидный слой мембраны встроены белки, которые выполняют несколько функций:
1) белки-насосы – перемещают в клетке ионы и молекулы против градиента концентрации;
2) белки, встроенные в каналы, обеспечивают избирательную проницаемость мембраны;
3) рецепторные белки осуществляют распознавание нужных молекул и их фиксацию на мембране;
4) ферменты облегчают протекание химической реакции на поверхности нейрона.
В некоторых случаях один и тот же белок может выполнять функции как рецептора, фермента, так и насоса.
Интегративная часть.
Аксоновый холмик
– место выхода аксона из нейрона.
Сома нейрона (тело нейрона) выполняет наряду с информационной и трофическую функцию относительно своих отростков и синапсов. Сома обеспечивает рост дендритов и аксонов. Сома нейрона заключена в многослойную мембрану, которая обеспечивает формирование и распространение электротонического потенциала к аксонному холмику.
Передающая часть.
Аксон
– вырост цитоплазмы, приспособленный для проведения информации, которая собирается дендритами и перерабатывается в нейроне. Аксон дендритной клетки имеет постоянный диаметр и покрыт миелиновой оболочкой, которая образована из глии, у аксона разветвленные окончания, в которых находятся митохондрии и секреторные образования.
Функции нейронов:
1) генерализация нервного импульса;
2) получение, хранение и передача информации;
3) способность суммировать возбуждающие и тормозящие сигналы (интегративная функция).
Виды нейронов:
1) по локализации:
а) центральные (головной и спинной мозг);
б) периферические (мозговые ганглии, черепные нервы);
2) в зависимости от функции:
а) афферентные (чувствительные), несущие информацию от рецепторов в ЦНС;
б) вставочные (коннекторные), в элементарном случае обеспечивающие связь между афферентным и эфферентным нейронами;
в) эфферентные:
– двигательные – передние рога спинного мозга;
– секреторные – боковые рога спинного мозга;
3) в зависимости от функций:
а) возбуждающие;
б) тормозящие;
4) в зависимости от биохимических особенностей, от природы медиатора;
5) в зависимости от качества раздражителя, который воспринимается нейроном:
а) мономодальный;
б) полимодальные.
3. Рефлекторная дуга, ее компоненты, виды, функции
Деятельность организма – закономерная рефлекторная реакция на стимул. Рефлекс
– реакция организма на раздражение рецепторов, которая осуществляется с участием ЦНС. Структурной основой рефлекса является рефлекторная дуга.
Рефлекторная дуга
– последовательно соединенная цепочка нервных клеток, которая обеспечивает осуществление реакции, ответа на раздражение.
Рефлекторная дуга состоит из шести компонентов: рецепторов, афферентного (чувствительного) пути, рефлекторного центра, эфферентного (двигательного, секреторного) пути, эффектора (рабочего органа), обратной связи.
Рефлекторные дуги могут быть двух видов:
1) простые – моносинаптические рефлекторные дуги (рефлекторная дуга сухожильного рефлекса), состоящие из 2 нейронов (рецепторного (афферентного) и эффекторного), между ними имеется 1 синапс;
2) сложные – полисинаптические рефлекторные дуги. В их состав входят 3 нейрона (их может быть и больше) – рецепторный, один или несколько вставочных и эффекторный.
Представление о рефлекторной дуге как о целесообразном ответе организма диктует необходимость дополнить рефлекторную дугу еще одним звеном – петлей обратной связи. Этот компонент устанавливает связь между реализованным результатом рефлекторной реакции и нервным центром, который выдает исполнительные команды. При помощи этого компонента происходит трансформация открытой рефлекторной дуги в закрытую.
Особенности простой моносинаптической рефлекторной дуги:
1) территориально сближенные рецептор и эффектор;
2) рефлекторная дуга двухнейронная, моносинаптическая;
3) нервные волокна группы А? (70—120 м/с);
4) короткое время рефлекса;
5) мышцы, сокращающиеся по типу одиночного мышечного сокращения.
Особенности сложной моносинаптической рефлекторной дуги:
1) территориально разобщенные рецептор и эффектор;
2) рецепторная дуга трехнейронная (может быть и больше нейронов);
3) наличие нервных волокон группы С и В;
4) сокращение мышц по типу тетануса.
Особенности вегетативного рефлекса:
1) вставочный нейрон находится в боковых рогах;
2) от боковых рогов начинается преганглионарный нервный путь, после ганглия – постганглионарный;
3) эфферентный путь рефлекса вегетативной нервной дуги прерывается вегетативным ганглием, в котором лежит эфферентный нейрон.
Отличие симпатической нервной дуги от парасимпатической: у симпатической нервной дуги преганглионарный путь короткий, так как вегетативный ганглий лежит ближе к спинному мозгу, а постганглионарный путь длинный.
У парасимпатической дуги все наоборот: преганглионарный путь длинный, так как ганглий лежит близко к органу или в самом органе, а постганглионарный путь короткий.
4. Функциональные системы организма
Функциональная система
– временное функциональное объединение нервных центров различных органов и систем организма для достижения конечного полезного результата.
Полезный результат – самообразующий фактор нервной системы. Результат действия представляет собой жизненно важный адаптивный показатель, который необходим для нормального функционирования организма.
Существует несколько групп конечных полезных результатов:
1) метаболическая – следствие обменных процессов на молекулярном уровне, которые создают необходимые для жизни вещества и конечные продукты;
2) гомеостатическая – постоянство показателей состояния и состава сред организма;
3) поведенческая – результат биологической потребности (половой, пищевой, питьевой);
4) социальная – удовлетворение социальных и духовных потребностей.
В состав функциональной системы включаются различные органы и системы, каждый из которых принимает активное участие в достижении полезного результата.
Функциональная система, по П. К. Анохину, включает в себя пять основных компонентов:
1) полезный приспособительный результат – то, ради чего создается функциональная система;
2) аппарат контроля (акцептор результата) – группу нервных клеток, в которых формируется модель будущего результата;
3) обратную афферентацию (поставляет информацию от рецептора в центральное звено функциональной системы) – вторичные афферентные нервные импульсы, которые идут в акцептор результата действия для оценки конечного результата;
4) аппарат управления (центральное звено) – функциональное объединение нервных центров с эндокринной системой;
5) исполнительные компоненты (аппарат реакции) – это органы и физиологические системы организма (вегетативная, эндокринные, соматические). Состоит из четырех компонентов:
а) внутренних органов;
б) желез внутренней секреции;
в) скелетных мышц;
г) поведенческих реакций.
Свойства функциональной системы:
1) динамичность. В функциональную систему могут включаться дополнительные органы и системы, что зависит от сложности сложившейся ситуации;
2) способность к саморегуляции. При отклонении регулируемой величины или конечного полезного результата от оптимальной величины происходит ряд реакций самопроизвольного комплекса, что возвращает показатели на оптимальный уровень. Саморегуляция осуществляется при наличии обратной связи.
В организме работает одновременно несколько функциональных систем. Они находятся в непрерывном взаимодействии, которое подчиняется определенным принципам:
1) принципу системы генеза. Происходят избирательное созревание и эволюция функциональных систем (функциональные системы кровообращения, дыхания, питания, созревают и развиваются раньше других);
2) принципу многосвязного взаимодействия. Происходит обобщение деятельности различных функциональных систем, направленное на достижение многокомпонентного результата (параметры гомеостаза);
3) принципу иерархии. Функциональные системы выстраиваются в определенный ряд в соответствии со своей значимостью (функциональная система целостности ткани, функциональная система питания, функциональная система воспроизведения и т. д.);
4) принципу последовательного динамического взаимодействия. Осуществляется четкая последовательность смены деятельности одной функциональной системы другой.
5. Координационная деятельность ЦНС
Координационная деятельность (КД) ЦНС представляет собой согласованную работу нейронов ЦНС, основанную на взаимодействии нейронов между собой.
Функции КД:
1) обеспечивает четкое выполнение определенных функций, рефлексов;
2) обеспечивает последовательное включение в работу различных нервных центров для обеспечения сложных форм деятельности;
3) обеспечивает согласованную работу различных нервных центров (при акте глотания в момент глотания задерживается дыхание, при возбуждении центра глотания тормозится центр дыхания).
Основные принципы КД ЦНС и их нейронные механизмы.
1. Принцип иррадиации (распространения). При возбуждении небольших групп нейронов возбуждение распространяется на значительное количество нейронов. Иррадиация объясняется:
1) наличием ветвистых окончаний аксонов и дендритов, за счет разветвлений импульсы распространяются на большое количество нейронов;
2) наличием вставочных нейронов в ЦНС, которые обеспечивают передачу импульсов от клетки к клетке. Иррадиация имеет границы, которая обеспечивается тормозным нейроном.
2. Принцип конвергенции. При возбуждении большого количества нейронов возбуждение может сходиться к одной группе нервных клеток.
3. Принцип реципрокности – согласованная работа нервных центров, особенно у противоположных рефлексов (сгибание, разгибание и т. д.).
4. Принцип доминанты. Доминанта
– господствующий очаг возбуждения в ЦНС в данный момент. Это очаг стойкого, неколеблющегося, нераспространяющегося возбуждения. Он имеет определенные свойства: подавляет активность других нервных центров, имеет повышенную возбудимость, притягивает нервные импульсы из других очагов, суммирует нервные импульсы. Очаги доминанты бывают двух видов: экзогенного происхождения (вызванные факторами внешней среды) и эндогенными (вызванные факторами внутренней среды). Доминанта лежит в основе формирования условного рефлекса.
5. Принцип обратной связи. Обратная связь – поток импульсов в нервную систему, который информирует ЦНС о том, как осуществляется ответная реакция, достаточна она или нет. Различают два вида обратной связи:
1) положительная обратная связь, вызывающая усиление ответной реакции со стороны нервной системы. Лежит в основе порочного круга, который приводит к развитию заболеваний;
2) отрицательная обратная связь, снижающая активность нейронов ЦНС и ответную реакцию. Лежит в основе саморегуляции.
6. Принцип субординации. В ЦНС существует определенная подчиненность отделов друг другу, высшим отделом является кора головного мозга.
7. Принцип взаимодействия процессов возбуждения и торможения. ЦНС координирует процессы возбуждения и торможения:
оба процесса способны к конвергенции, процесс возбуждения и в меньшей степени торможения способны к иррадиации. Торможение и возбуждение связаны индукционными взаимоотношениями. Процесс возбуждения индуцирует торможение, и наоборот. Различаются два вида индукции:
1) последовательная. Процесс возбуждения и торможения сменяют друг друга по времени;
2) взаимная. Одновременно существует два процесса – возбуждения и торможения. Взаимная индукция осуществляется путем положительной и отрицательной взаимной индукции: если в группе нейронов возникает торможение, то вокруг него возникают очаги возбуждения (положительная взаимная индукция), и наоборот.
По определению И. П. Павлова, возбуждение и торможение – это две стороны одного и того же процесса. Координационная деятельность ЦНС обеспечивает четкое взаимодействие между отдельными нервными клетками и отдельными группами нервных клеток. Выделяют три уровня интеграции.
Первый уровень обеспечивается за счет того, что на теле одного нейрона могут сходиться импульсы от разных нейронов, в результате происходит или суммирование, или снижение возбуждения.
Второй уровень обеспечивает взаимодействиями между отдельными группами клеток.
Третий уровень обеспечивается клетками коры головного мозга, которые способствуют более совершенному уровню приспособления деятельности ЦНС к потребностям организма.
6. Виды торможения, взаимодействие процессов возбуждения и торможения в ЦНС. Опыт И. М. Сеченова
Торможение
– активный процесс, возникающий при действии раздражителей на ткань, проявляется в подавлении другого возбуждения, функционального отправления ткани нет.
Торможение может развиваться только в форме локального ответа.
Выделяют два типа торможения:
1) первичное. Для его возникновения необходимо наличие специальных тормозных нейронов. Торможение возникает первично без предшествующего возбуждения под воздействием тормозного медиатора. Различают два вида первичного торможения:
а) пресинаптическое в аксо-аксональном синапсе;
б) постсинаптическое в аксодендрическом синапсе.
2) вторичное. Не требует специальных тормозных структур, возникает в результате изменения функциональной активности обычных возбудимых структур, всегда связано с процессом возбуждения. Виды вторичного торможения:
а) запредельное, возникающее при большом потоке информации, поступающей в клетку. Поток информации лежит за пределами работоспособности нейрона;
б) пессимальное, возникающее при высокой частоте раздражения;
в) парабиотическое, возникающее при сильно и длительно действующем раздражении;
г) торможение вслед за возбуждением, возникающее вследствие снижения функционального состояния нейронов после возбуждения;
д) торможение по принципу отрицательной индукции;
е) торможение условных рефлексов.
Процессы возбуждения и торможения тесно связаны между собой, протекают одновременно и являются различными проявлениями единого процесса. Очаги возбуждения и торможения подвижны, охватывают большие или меньшие области нейронных популяций и могут быть более или менее выраженными. Возбуждение непременно сменяется торможением, и наоборот, т. е. между торможением и возбуждением существуют индукционные отношения.
Торможение лежит в основе координации движений, обеспечивает защиту центральных нейронов от перевозбуждения. Торможение в ЦНС может возникать при одновременном поступлении в спинной мозг нервных импульсов различной силы с нескольких раздражителей. Более сильное раздражение тормозит рефлексы, которые должны были наступать в ответ на более слабые.
В 1862 г. И. М. Сеченов открыл явление центрального торможения. Он доказал в своем опыте, что раздражение кристалликом хлорида натрия зрительных бугров лягушки (большие полушария головного мозга удалены) вызывает торможение рефлексов спинного мозга. После устранения раздражителя рефлекторная деятельность спинного мозга восстанавливалась. Результат этого опыта позволил И. М. Сеченому сделать заключение, что в ЦНС наряду с процессом возбуждения развивается процесс торможения, который способен угнетать рефлекторные акты организма. Н. Е. Введенский высказал предположение, что в основе явления торможения лежит принцип отрицательной индукции: более возбудимый участок в ЦНС тормозит активность менее возбудимых участков.
Современная трактовка опыта И. М. Сеченова (И. М. Сеченов раздражал ретикулярную формацию ствола мозга): возбуждение ретикулярной формации повышает активность тормозных нейронов спинного мозга – клеток Реншоу, что приводит к торможению ?-мотонейронов спинного мозга и угнетает рефлекторную деятельность спинного мозга.
7. Методы изучения ЦНС
Существуют два большие группы методов изучения ЦНС:
1) экспериментальный метод, который проводится на животных;
2) клинический метод, который применим к человеку.
К числу экспериментальных методов
классической физиологии относятся методы, направленные на активацию или подавление изучаемого нервного образования. К ним относятся:
1) метод поперечной перерезки ЦНС на различных уровнях;
2) метод экстирпации (удаления различных отделов, денервации органа);
3) метод раздражения путем активирования (адекватное раздражение – раздражение электрическим импульсом, схожим с нервным; неадекватное раздражение – раздражение химическими соединениями, градуируемое раздражение электрическим током) или подавления (блокирования передачи возбуждения под действием холода, химических агентов, постоянного тока);
4) наблюдение (один из старейших, не утративших своего значения метод изучения функционирования ЦНС. Он может быть использован самостоятельно, чаще используется в сочетании с другими методами).
Экспериментальные методы при проведении опыта часто сочетаются друг с другом.
Клинический метод
направлен на изучение физиологического состояния ЦНС у человека. Он включает в себя следующие методы:
1) наблюдение;
2) метод регистрации и анализа электрических потенциалов головного мозга (электро-, пневмо-, магнитоэнцефалография);
3) метод радиоизотопов (исследует нейрогуморальные регуляторные системы);
4) условно-рефлекторный метод (изучает функции коры головного мозга в механизме обучения, развития адаптационного поведения);
5) метод анкетирования (оценивает интегративные функции коры головного мозга);
6) метод моделирования (математического моделирования, физического и т. д.). Моделью является искусственно созданный механизм, который имеет определенное функциональное подобие с исследуемым механизмом организма человека;
7) кибернетический метод (изучает процессы управления и связи в нервной системе). Направлен на изучение организации (системных свойств нервной системы на различных уровнях), управления (отбора и реализации воздействий, необходимых для обеспечения работы органа или системы), информационной деятельности (способности воспринимать и перерабатывать информацию – импульс в целях приспособления организма к изменениям окружающей среды).
Оглавление
Особенности строения
У людей с момента оплодотворения яйцеклетки начинается развитие и формирование ЦНС – из непосредственно нервной трубки образуются головной, а также спинной мозг. Их защищают костные каркасы – черепная коробка и позвонки. Ниже расположены три оболочки – твердая с паутинной и сосудистой. В их пределах находятся жидкие среды – ликвор с кровью.
Традиционно строение ЦНС подразумевает, что клетки – нейроны, объединяются в особые скопления – нервные центры. Тела нейронов образуют серое вещество, тогда как их короткие и длинные отростки – белую субстанцию, проводящие сигнальные импульсы пути.
Помимо этого, в ЦНС присутствует нейроглия, состоящая их глиальных клеток. Их количество в несколько раз превышает число нейронов. Поэтому они составляют большую часть массы центрального отдела нервной системы.
В головном отделе принято выделять несколько сегментов – мозжечок с большими полушариями, а также продолговатый, средний, промежуточный и задний участки. Каждый из них несет свою ответственность за правильное функционирование органа отдельно, и всего организма и систем в целом. В спинном мозге градация осуществляется согласно сегментам позвоночного ствола – от шейного, до грудного и пояснично-крестцового.
Основные функции
Главные отделы ЦНС образованы мозговыми структурами, состоящими из большого количества взаимосвязанных и непрерывно взаимодействующих нервных клеток. Периферический отдел, образованный нервными волокнами, которые иннервируют скелетную мускулатуру (мышцы конечностей и туловища), принимает импульсы, поступающие от центральных участков мозга. Благодаря такому строению функции ЦНС человека разнообразны и обеспечивают взаимодействие всех участков человеческого тела.
Строение ЦНС поддерживает целостность и единство жизнедеятельности организма, а главная функция центральной системы сводится к формированию нервных реакций (рефлексов) на внешние раздражители. Взаимодействие с окружающим миром преимущественно координируется корковыми и подкорковыми зонами больших полушарий. Функции ЦНС включают:
- Чувствительность к факторам внешней среды (температурный режим, влажность, тактильные контакты, слух, зрение).
- Двигательную активность. В организации произвольных движений задействованы спинные и головные мозговые структуры.
- Регуляцию умственной деятельности и поведения.
- Обеспечение работы тазовых органов (процессы мочеиспускания и дефекации).
- Управление дыхательной и сердечно-сосудистой системой.
К центральной системе относятся такие элементы нервной ткани, как афферентные и эфферентные нейроны. Первые воспринимают импульсы, поступающие из периферии, вторые передают их эффекторным (чья деятельность определяется рефлексами), исполнительным органам. Эффекторы – соединения, которые вызывают физиологические реакции за счет связывания с белками и последующей регуляции их биологической активности.
Анатомия головного мозга
В составе центральной нервной системы главенствующее место, безусловно, занимает головной мозг. Внутри черепной коробки он представлен двумя крупными полушариями, испещренными глубокими и мелкими бороздами, под которыми расположены иные структурные единицы:
- Продолговатый участок – локализуется на блюменбаховом скате. Книзу он плавно трансформируется в спинной мозг. На его передней поверхности определяется продольная щель, по бокам от которой специалисты выделяют 2 своеобразных возвышения в виде валиков. Их именуют пирамидами с оливами. Тогда как подобную же борозду на задней поверхности структуры с двумя задними канатиками принято называть столбами.
- Над продолговатой зоной расположен задний мозг – в форме Варолиева моста, а также мозжечка. Внешне схожи с большими полушариями, но функционально имеются свои особенности. В глубине ткани находятся скопления ядер, от которых берут свое начало черепно-мозговые нервы.
- Взаимосвязь между продолговатой единицей и вышерасположенными отделами осуществляет средний мозг – представлен ножками, нервными пучками, а также четверохолмием. Переоценить их значение невозможно – именно в этой зоне пролегает множество важнейших нервных путей и расположены ядра нескольких пар нервов.
- Промежуточный участок – известен как зрительные бугры с подбугровой областью, локализуется дальше от центра головного мозга. Они содержат первичные клетки зрительной системы, а также чувствительные проводниковые волокна. Гипоталамус, он же подбугровый участок, принимает участие в обменных процессах.
Каждая из перечисленных единиц системы – от полушарий и мозжечка, до ствола головного мозга имеет свое значение для жизнедеятельности людей. Если сбой происходит в одной зоне – оболочки ЦНС, к примеру, опухоли мозга, то влияние будет оказываться на все участки органа.
Анатомические особенности спинного мозга
Прочный каркас позвоночного столба надежно защищает еще одну структурную единицу центральной нервной системы – спинной мозг. Его протяженность впечатляет – от затылочного отверстия черепной коробки до поясничных позвонков.
Визуально с двух его сторон можно отметить присутствие продольных борозд, тогда как непосредственно по центру – спинномозговой канал. С внешней стороны размещена белая субстанция – множество отростков нервных клеток, которые объединены в волокна. Серое же вещество представлено преимущественно боковыми, а также задними с передними роговыми зонами – напоминает бабочку в полете.
Двигательные нервные клетки локализуются в передних рогах, а задние образования имеют вставочные нейроны, которые осуществляют взаимосвязь с чувствительными клетками. Они расположены в узловых сегментах нервной системы.
В месте соединения передних волокон с задними зонами формируются корешки спинного мозга. Они, по сути – проводники между центральной и периферической системой. Именно за счет подобного анатомического строения осуществляется взаимосвязь между разными участками человеческого организма, сохраняется равновесие внутренней среды – спинномозговыми рефлексами.
Соматическая нервная система
Соматика — это отдел нервной системы, который отвечает за доставку моторных и чувствительных импульсов от рецепторов к органам центральной нервной системы и обратно. Большая часть нервных волокон соматической системы сосредоточена в коже, мышечном каркасе и органах, отвечающих за сенсорное восприятие. Именно соматическая нервная система практически на 100 % координирует сознательную часть активности человеческого тела и обработку информации, полученной от рецепторов органов чувств.
Основными элементами соматики являются 2 разновидности нейронов:
- сенсорные, или афферентные. Регулируют доставку информации к клеткам ЦНС;
- моторные, или эфферентные. Работают в обратном направлении, транспортируя нервные импульсы от ЦНС к клеткам и тканям.
И те и другие нейроны тянутся от отделов ЦНС прямо к конечной цели импульсов, то есть к мышечным и рецепторным клеткам, причём тело в большинстве случаев располагается непосредственно в центральной части нервной системы, а отростки достигают необходимой локализации.
Помимо сознательной деятельности, соматика включает также часть рефлексов, контролируемых неосознанно. С помощью таких реакций мышечная система приходит в активное состояние, не дожидаясь импульса от головного мозга, что позволяет действовать инстинктивно. Такой процесс возможен в том случае, если пути нервных волокон проходят непосредственно через спинной мозг. Примером подобных действий служит одёргивание руки при ощущении высокой температуры или коленный рефлекс при ударе молоточком по сухожилию.
Вегетативная нервная система
Вегетатика, или автономная нервная система, — отдел, координирующий активность преимущественно внутренних органов. Поскольку основные процессы жизнедеятельности — дыхание, метаболизм, сердечные сокращения, кровоток и т. д. — не подчинены сознанию, вегетативные нервные волокна реагируют преимущественно на изменения, происходящие во внутренней среде организма, оставаясь безучастными к сознательным импульсам. Благодаря этому в организме поддерживаются оптимальные условия для обеспечения энергоресурсами, необходимыми в конкретной ситуации.
Особенности вегетативной нервной деятельности подразумевают, что основные волокна сосредоточены не только в органах ЦНС, но и в остальных тканях человеческого тела. Многочисленные узлы рассеяны по всему организму, образуя автономную нервную систему вне пределов ЦНС, между мозговыми центрами и органами. Такая сеть может регулировать простейшие функции, однако более сложные механизмы всё же остаются под непосредственным контролем центральной нервной системы.
Ключевая роль вегетатики заключается в поддержании относительно постоянного гомеостаза путём самонастройки активности внутренних органов в зависимости от потребностей организма. Так, вегетативные волокна оптимизируют секрецию гормонов, скорость и интенсивность кровоснабжения тканей, интенсивность и частоту дыхания и сердечных сокращений и другие ключевые механизмы, которые должны реагировать на изменения внешней среды (например, при интенсивной физической нагрузке, повышении температуры или влажности воздуха, атмосферного давления и т. д.). Благодаря этим процессам обеспечиваются компенсаторные и приспособительные реакции, поддерживающие организм в оптимальной форме при любых обстоятельствах. Поскольку бессознательная деятельность внутренних органов может регулироваться в двух направлениях (активация и подавление), вегетатику также можно условно разделить на 2 отдела — парасимпатический и симпатический.
Симпатическая нервная система
Симпатический отдел вегетатики напрямую связан со спинномозговым веществом, расположенным от первого грудного до третьего поясничного позвонка. Именно здесь осуществляется стимуляция деятельности внутренних органов, необходимая во время повышенной энергозатраты — при физических нагрузках, во время стресса, интенсивной работы или эмоциональном потрясении. Такие механизмы позволяют поддержать организм, обеспечив его ресурсами, необходимыми для преодоления неблагоприятных условий.
Под воздействием симпатики учащается дыхание и пульсация сосудов, благодаря чему ткани лучше снабжаются кислородом, из клеток быстрее высвобождается энергия. Благодаря этому человек может активнее трудиться, справляясь с повышенными нагрузками в условиях неблагополучия. Однако эти ресурсы не могут быть бесконечными: рано или поздно количество запасов энергии снижается, и тело уже не может функционировать «на повышенных оборотах» без передышки. Тогда в работу включается парасимпатический отдел вегетатики.
Функции ЦНС
Исходя из особенностей строения и расположения структур центральной нервной системы, следуют ее основные функции:
- интегративная – установление взаимосвязи между клетками в тканях, органах в системах для образования единого высокоорганизованного человеческого организма;
- координирующая – обеспечение согласованности действий различных органов для достижения единой стоящей перед человеком задачи, к примеру, адаптация к резко изменившейся ситуации;
- регулирующая – структуры нервной системы контролируют все протекающие внутри процессы, без их участия не происходит ни одна деятельность;
- трофическая – выполняет регуляцию трофики, а также интенсивности обменных процессов в тканях, чтобы реакция на изменения была адекватной и быстрой;
- приспособительная – анализ и последующий синтез поступающей извне информации для приспособления к внешней среде.
Помимо всех перечисленных функций, значение ЦНС заключается в формировании ненаправленного поведения – в соответствии с доминирующей у человека потребности. По мере удовлетворения нижележащих – питание, дыхание, люди начинают искать свое внутреннее «Я», духовные ценности.
Несмотря на обилие научных работ о центральной нервной системе, в этой области таится много неизвестного. Человечество ожидает еще множество открытий.
Диагностика и лечение
С целью постановки диагноза могут потребоваться допплерография, магнитно-резонансная томография и компьютерная томография. По результатам проведённого обследования медиком назначается подходящее лечение.
Помимо этого, с целью выявления патологии применяется ультразвуковая и транскраниальная ультразвуковая допплерография. Может потребоваться и дуплексное сканирование, которое является наиболее безопасным и информативным.
В зависимости от поставленного диагноза могут применяться медикаменты, имеющие различные свойства, а именно:
- противосудорожные;
- улучшающие кровообращение в мозге;
- седативные;
- улучшающие сосудистую проницаемость;
- нейролептики.
Врождённые патологии вылечить будет не так просто. Первоочередно требуется устранение негативной симптоматики имеющегося заболевания.
Центральная нервная система представляет собой сложную организацию с множеством составляющих, которые тесно связаны между собой. При патологии одной из них страдает весь организм, что приводит к нарушениям возможности двигаться, слышать, говорить и прочих необходимых функций.