ОСНОВНЫЕ ФУНКЦИОНАЛЬНЫЕ ХАРАКТЕРИСТИКИ ВОЗБУДИМЫХ ТКАНЕЙ


Возбудимость

Возбудимость — способность ткани отвечать на раздражение специализированной реакцией — возбуждением. Возбудимость является одной из форм раздражимости.

Возбудимыми тканями называются такие ткани, клетки которых способны в ответ на раздражение генерировать специфическую реакцию — возбуждение.

Возбуждение — это специализированная ответная реакция живого объекта на действие раздражителя, проявляющаяся в изменениях его определенных параметров.

К возбудимым тканям относятся:

  • нервная,
  • мышечная,
  • железистая.

Признаки возбуждения:

  • общие,
  • специфические.

Общие признаки возбуждения (присущи всем возбудимым тканям):

  • Изменение уровня обменных процессов в тканях;
  • Выделение различных видов энергии — тепловой, электрической.

Специфические признаки возбуждения (характерны для определенного вида тканей):

  • Мышечная ткань — сокращение,
  • Железистая — выделение секрета,
  • Нервная — генерация и проведение нервного импульса.

Невозбудимыми являются:

  • эпителиальная,
  • соединительная ткани.

Мышечная и нервная ткани

Мышечные ткани

неоднородны по своему происхождению в эмбриогенезе, их строение также различается, но есть одно свойство, которое их объединяет в группу — способность к
сокращению
. Их клетки имеют вытянутую, удлиненную форму, хорошо воспринимают раздражающий нервный импульс и сокращаются в ответ. Без мышечных тканей организм не смог бы перемещаться в пространстве, а органы не смогли бы функционировать — сердце качать кровь, язык «болтаться», кишечник продвигать пищу, пальцы нажимать на кнопки клавиатуры…

Итак, основные свойства этого вида тканей: возбудимость

(способность отреагировать на раздражение),
сократимость
(умение клеток укорачиваться и вытягиваться),
проводимость
(способность мембраны клетки «гнать» волну возбуждения, передавать импульс). Существуют два вида мышечной ткани — гладкая и поперечно-полосатая. Разберем подробнее их особенности.

1. Гладкая мышечная ткань

присутствует во внутренних органах. Ее клетки напоминают веретена и имеют одно палочковидное ядро. Сокращение гладких мышц происходит непроизвольно, идет медленно, при этом мышцы сжимаются сильно, но утомляются мало. Например, кишечник сокращается до 12 раз за одну минуту, продвигая пищу. Структурная единица — мышечная клетка,
миоцит
, содержащая гликоген и миофиламенты (миофибриллы), а снаружи покрытая базальной мембраной. Интересно, что миоциты этой ткани могут делиться всю жизнь, в отличие, скажем, от кардиомиоцитов (клеток сердечной ткани), которые делятся в ходе развития эмбриона, но потом эту способность почти утрачивают.

2. Поперечно-полосатая мышечная ткань

отличается поперечной исчерченностью волокон и высокой эластичностью. Исчерченность вызвана особым распределением в цитоплазме волокон множества ниточек-
миофибрилл
(состоящих из белковых саркомеров), которые объединяются в пучки. В итоге мышечное волокно по всей длине плотно заполняется миофибриллами. Именно они является сократительным элементом мышечной клетки. Поперечно-полосатая мышечная ткань бывает двух типов: скелетная и сердечная.

1) Скелетная ткань

формирует скелетные мышцы, ею можно управлять произвольно, руководя движениями. Ее структурная единица —
мышечное волокно
. Состоит оно из
миосимпласта
(многоядерной структуры, в которой сливаются клетки-саркобласты; в центре находятся миофибриллы) и
миосателлитоцитов
(одноядерных стволовых клеток). Снаружи эти образования окутывает базальная мембрана. Мышечные волокна тонки, но их длина может достигать нескольких сантиметров. Несколько мышечных волокон образуют пучок и имеют общую оболочку-сарколемму. Несколько пучков также имеют свою оболочку — так образуется мышца. Скелетные мышцы с помощью сухожилий присоединяются к костям или друг к другу.

2) Сердечная ткань

характеризуется хорошей проводимостью. Ее клетки обычно содержат одно ядро, реже два. Эта ткань формирует сердечную мышцу —
миокард
. Структурная единица — клетка
кардиомиоцит
со множественными митохондриями. Сокращается сердечная ткань непроизвольно, управлять этим процессом извне нельзя.

Нервная ткань

Нервная ткань

создает основу нервной системы. Главные свойства ее — возбудимость и проводимость, она воспринимает нервный импульс и передает его. Благодаря нервной ткани взаимодействуют все органы. Эта ткань имеется в составе нервов, головного и спинного мозга. Ее базу составляют нервные клетки —
нейроны
, и специфическая субстанция
нейроглия
(вспомогательные клетки), которая обеспечивает питание и защиту нейронов. Нейроны, возможно, самые красивые в ряду прочих клеток. Многие из них имеют форму звезды или деревца, другие похожи на груши, веретена, пирамидки… Состоят они из
тела и отростков — дендритов и аксонов
. Дендриты (короткие, множественные, разветвленные) воспринимают раздражение, аксоны (длинные, единичные) передают сигнал другим клеткам. Синапс — место, где аксоны контактируют с другими нервными клетками.
Хочешь сдать экзамен на отлично? Жми сюда — курсы ОГЭ по биологии

Физиологические свойства возбудимых тканей

Основными свойствами всех возбудимых тканей являются:

  • возбудимость,
  • проводимость,
  • лабильность.

Лабильность (функциональная подвижность) — это способность ткани реагировать на различные воздействия с определенной скоростью, то есть способность воспроизводить определенную частоту раздражения.

Мерой лабильности является наибольшее число ответных реакций, которыми возбудимая ткань способна реагировать за единицу времени в соответствии с частотой приложенных к ней раздражений.

Проводимость — это способность ткани и клетки передавать возбуждение.

Раздражение — это процесс воздействия на живую ткань агентов внешней по отношению к этой ткани среды.

Раздражитель — это причина, способная вызвать ответную реакцию.

Возбудимость и проводимость основные свойства какой ткани

1. Основные физиологические свойства возбудимых тканей

  • ·Возбудимость

    способность ткани отвечать на раздражение возбуждением. Возбудимость зависти от уровня обменных процессов и заряда клеточной мембраны
    . Показатель возбудимости
    порог раздражения
    – та минимальная сила раздражителя, которая вызывает первую видимую ответную реакцию ткани. Раздражители бывают: подпороговые, пороговые, надпороговые. Возбудимость и порог раздражения –
    обратно пропорциональные величины.
  • ·Проводимость – способность ткани проводить возбуждение по всей своей длине
    . Показатель проводимости –
    скорость проведения возбуждения
    . Скорость проведения возбуждения по скелетной ткани – 6-13 м/с, по нервной ткани до 120 м/с. Проводимость зависит от интенсивности обменных процессов, от возбудимости (прямо пропорционально).
  • ·Рефрактерность (невозбудимость) – способность ткани резко снижать свою возбудимость при возбуждении.
    В момент самой активной ответной реакции ткань становится невозбудимой.
    Различают:
  • абсолютно рефрактерный период

    – время, в течении которого ткань не отвечает абсолютно ни на какие возбудители;
    относительный рефрактерный период
    – ткань относительно невозбудима – происходит восстановление возбудимости до исходного уровня.
    Показатель рефрактерности

    продолжительность рефрактерного периода (t).
    Продолжительность рефрактерного периодау скелетной мышцы – 35-50 мс, а у нервной ткани – 5-5 мс. Рефрактерность ткани зависит от
    уровня обменных процессов и функциональной активности (обратная зависимость).

  • ·Лабильность (функциональная подвижность) – способность ткани воспроизводить определенное число волн возбуждения в единицу времени в точном соответствии с ритмом наносимых раздражений.
    Это свойство характеризует
    скорость возникновения возбуждения
    . Показатель лабильности: максимальное количество волн возбуждения в данной ткани: нервные волокна – 500-1000 импульсов в секунду, мышечная ткань – 200-250 импульсов в секунду, синапс – 100-125 импульсов в секунду. Лабильность зависит от уровня обменных процессов в ткани, возбудимости, рефрактерности.
  • ·
    Для мышечной ткани к четырем перечисленным свойствам добавляется пятое –
    сократимость.
  • 2. Понятие о состоянии относительного физиологического покоя и активности
    Состояние покоя
    наблюдается при отсутствии действия раздражителя. Характеризуется относительно
    постоянным уровнем обменных процессов
    (т. к. этот уровень все же постоянно меняется – состояние относительного покоя);
    отсутствием функциональных проявлений
    данной ткани.
    Состояние активности
    возникает под действием раздражителей. Характеризуется выраженным
    изменением уровня обменных процессов
    ,
    проявлениями функциональных отправлений
    данной ткани. Согласно А. А. Ухтомскому: “Покой и активность – два разных уровня обменных процессов”.
    3. Формы активного состояния возбудимых тканейСуществуют 2 формы активного состояния возбудимых тканей
    :
    возбуждение;торможение
    .
    Возбуждение

    активный процесс – ответная реакция ткани на раздражение
    . Характеризуется проявлением
    функциональных отправлений
    . Любое возбуждение имеет ряд признаков. 1.
    Неспецифические признаки
    : имеются во всех тканях – изменение проницаемости клеточной мембраны, изменение движения ионов через клеточную мембрану, изменение заряда клеточной мембраны, изменение уровня обменных процессов, изменение потребления кислорода и выделения углекислого газа, изменение температуры ткани. Изменение вязкости и т. д.. Легче всего регистрируется изменение заряда клеточной мембраны. 2.
    Специфические признаки
    (
    функция
    ткани) – характерны для определенного вида ткани (например: мышечная ткань – сокращение, нервная ткань – генерация нервных импульсов).
    Торможение

    возникает в ткани в ответ на раздражение и характеризуется угнетением функциональных отправлений данной ткани
    . Торможение протекает с затратой и выделением энергии, но они меньше, чем при возбуждении.
    Вывод:
    при нанесении раздражения в ткани возникает или возбуждение или торможение, эти процессы тесно взаимосвязаны между собой и (по Павлову) являются двумя сторонами одного процесса.
    4. Виды возбужденияВозбуждение может быть 2-х видов:местное
    (локальный ответ);
    распространяющееся
    (импульсное).
    Местное возбуждение
    – наиболее древний вид (низшие формы организмов и низковозбудимые ткани – например, соединительная ткань). Местное возбуждение возникает и в высокоорганизованных тканях под действием
    подпорогового раздражителя
    или как компонент
    потенциала действия
    . При местном возбуждении нет видимой ответной реакции.
    Особенности местного возбуждения
    : нет латентного (скрытого) периода –
    возникает сразу же при действии раздражителя
    ;
    нет порога раздражения;
    местное возбуждение
    градуально
    – изменение заряда клеточной мембраны пропорционально силе подпорогового раздражителя;
    нет рефрактерного периода
    , наоборот характерно
    небольшое повышение возбудимости
    ;
    распространяется с декрементом (затуханием
    ).
    Импульсное (распространяющееся) возбуждение
    – присуще высокоорганизменным тканям, возникает под действием
    порогового и сверхпорогового раздражителей
    .
    Особенности импульсного возбуждения:имеет латентный период
    – между моментом нанесения раздражения и видимой ответной реакцией проходит некоторое время;
    имеет порог раздражения;не градуально
    – изменение заряда клеточной мембраны не зависит от силы раздражителя;
    наличие рефрактерного периода;импульсное возбуждение не затухает
    .
    Вывод:
    в организме животного и человека наблюдается местное и импульсное возбуждение. Возникновение того или иного вида возбуждения зависит от степени развития ткани и силы раздражителя.
    5. Законы взаимодействия раздражителя с возбудимой тканьюСуществует определенная зависимость ответной реакции от параметра раздражителя
    .
    Законы:
    закон силы раздражителя; закон длительности действия раздражителя; закон градиента раздражителя.
    Закон силы раздражителя
    .
    Ответная реакция ткани пропорциональна силе наносимых раздражений до определенного предела
    . Увеличение ответной реакции – результат возбуждения все большего числа волокон ткани. При действии максимального раздражителя возникает наибольшая ответная реакция, т. к. все волокна возбуждения и дальнейшее увеличение ответной реакции невозможно.
    Закон длительности действия раздражителя
    .
    Ответная реакция ткани зависит от времени действия раздражителя, но до определенного предела.
    Характер ответной реакции зависит от силы раздражителя и времени действия. Кривая силы – времени
    Гофвега-Вейса

    Ланина
    отражает эту зависимость:P – реобаза, п. в. – полезное время.
    Пояснения: под действием слабых раздражителей с течением времени нет видимой реакции.
    При достижении порога – появляется видимая ответная реакция. Эта пороговая величина называется
    реобазой
    – минимальной по силе электрический ток, вызывающий минимальную ответную реакцию ткани. Время, в течении которого ток равный реобазе вызывает ответную реакцию –
    полезное время.
    Т. к. порог раздражения – величина непостоянная, в клинических исследованиях используют раздражитель равный по силе двум реобазам. Время, в течение которого раздражитель, равный двум реобазам вызывает ответную реакцию, называется
    хроноксией.
    Хроноксия определяется для суждения о функциональной активности ткани (нервной и мышечной).
    Хроноксия

    один из показателей возбудимости
    , чем больше возбудимость, тем меньше хроноксия.
    Закон градиента раздражителя
    .
    Градиент

    крутизна нарастания силы раздражителя
    . Ответная реакция ткани зависит от
    градиента раздражителя
    до определенных пределов.
    Аккомодация
    – приспособление ткани к медленно нарастающему по силе раздражителю. При медленном увеличении силы раздражителя может не быть ответной реакции. Механизм аккомодации: под действием медленно нарастающего по силе раздражителя развивается натриевая
    инактивация
    и, как следствие, постоянное повышение порога раздражения.
    Вывод:
    1) в зависимости от силы, длительности и градиента раздражителя наблюдается разная ответная реакция ткани; 2) эта зависимость не беспредельна.

Классификация раздражителей

По природе:

  • физические,
  • химические,
  • физико-химические,
  • биологические.

По биологическому значению раздражители делятся на 2 группы:

  • Адекватные — раздражители, к воздействию которых ткани в процессе эволюции приспособлены в наибольшей степени.
  • Неадекватные — раздражители, к воздействию которых возбудимые ткани специально не приспособлены.

Состав плазматической мембраны

  • Липиды (в основном фосфолипиды),
  • Белки (гликопротеины),
  • Углеводы (мукополисахариды).

Липиды очень плотно упакованы в мембране, между ними нет практически никаких расстояний, поэтому мембрана плохо пропускает воду, практически непроницаема для ионов и других крупных молекул.

Белковые молекулы могут быть погружены в слой липидов с внеклеточной или с цитоплазматической стороны, либо могут целиком пронизывать мембрану.

Если белки прикреплены к поверхности мембраны, их называют периферическими. С внутренней стороны это будут белки-ферменты, а с наружной — белки-рецепторы.

Если белки пронизывают всю толщу мембраны клеток, то их называют интегральными или трансмембранными.

Такие белки образуют структуры, обеспечивающие движение ионов через мембрану.

Если белки образуют стенки поры, сквозь которую путем простой диффузии проходят ионы, то это ионные каналы.

Если трансмембранные белки перекачивают ионы против концентрационного и электрического градиентов, то это ионные насосы.

Все каналы, имеющиеся в живых тканях, можно разделить на 2 типа:

  • первый тип — каналы покоя, которые спонтанно открываются и закрываются без всяких внешних воздействий;
  • второй тип — gate-каналы (воротные каналы) — в покое они закрыты и открываются под действием раздражителей.

Ионные каналы:

  • неспецифические (каналы утечки, всегда открыты),
  • специфические (селективные), обладающие способностью пропускать только определенные ионы при изменении заряда на мембране или действии химических веществ.

Транспорт веществ

Транспорт частиц через каналы является жизненно важным для клеток процессом.

Обычно транспорт веществ делят на пассивный (без затраты энергии), т.е. транспорт веществ по концентрационному, осмотическому и электрохимическому градиентам и активный (с затратой энергии).

Понравился сайт? Поддержи нас подпиской в соцсетях!

  • Группа сайта в VK
  • Профиль сайта в Twitter
  • Сообщество сайта в Facebook

Различают первично- и вторично-активный транспорт

Первично-активный транспорт ионов обеспечивается специальными ионными насосами, осуществляется с затратой энергии АТФ, против концентрационного градиента, т.е. перенос веществ происходит из меньшей концентрации через мембрану в большую концентрацию.

Вторично-активный транспорт:

  • Это вид транспорта для переноса веществ (глюкозы, аминокислот и др.) через мембрану также против градиента, но без затраты энергии.
  • Эти вещества проходят через мембрану с помощью специальных переносчиков (напр. ионов Na), на транспорт которых и затрачивается энергия, а эти вещества движутся как бы попутно.

Мембранный потенциал или потенциал покоя

В состоянии покоя между наружной и внутренней поверхностью мембраны возникает разность зарядов или потенциалов, которая в дальнейшем была названа мембранным потенциалом (МП) или потенциалом покоя (ПП).

Положительные заряды концентрируются на наружной поверхности мембраны, а отрицательные заряды — на внутренней поверхности.

Мембранный потенциал измеряется в отрицательных значениях, т.к. внутренняя поверхность мембраны заряжена отрицательно. Его величина колеблется от -60 до -90 мВ у разных клеток.

Методы измерения мембранного потенциала

В зависимости от места приложения электродов:

  • внеклеточный с помощью макроэлектродов,
  • внутриклеточный с помощью микроэлектродов.

1. Исследование ПП с помощью макроэлектродов осуществляют, прикладывая один из них к неповрежденному, а другой — к поврежденному участку ткани.

2. Микроэлетродный метод

Микроэлектрод представляет собой микропипетку диаметром 0,5 — 1 мкм, наполненную концентрированным солевым раствором (KCl). Внутри него может также находится неполяризующийся электрод — из серебра, золота или платины.

Второй электрод помещается во внеклеточную жидкость.

Оба электрода присоединяются к усилителю и осциллографу для регистрации потенциала. В момент прокалывания мембраны, осциллограф регистрирует появление отрицательного потенциала, соответствующего ПП.

1-ая причина — ионная асимметрия:

  • Ионов K находится в клетке в 30-50 раз больше, чем снаружи;
  • Ионов Na больше находится вне клетки, чем внутри нее в 8-10 раз;
  • Ионов Ca во много раз больше вне клетки;
  • Ионов Cl также больше во внеклеточной жидкости, чем внутри клетки в 50 раз;
  • Внутри клетки находится больше органических анионов по сравнению с наружной поверхностью.

Таким образом, для этих ионов направление концентрационного градиента различно!

  • Для K из клетки (из большей концентрации к меньшей);
  • Для Na, Ca и Cl в клетку.

2-ая причина, обуславливающая поляризацию мембраны:

  • различная проницаемость мембраны для различных ионов. В состоянии покоя мембрана в 25 раз более проницаема для ионов K, чем для Na, т.к. количество калиевых каналов на единицу площади мембраны намного больше, чем натриевых.
  • Поскольку концентрация ионов K в цитоплазме намного выше, чем снаружи клетки, они начинают двигаться через канал и выходят из клетки.
  • Ионы K несут положительные заряды, поэтому мембрана снаружи заряжается положительно.

Отрицательный заряд на внутренней поверхности мембраны обусловлен наличием органических анионов — крупномолекулярных соединений, которые заряжены отрицательно, и для которых мембрана непроницаема (глютамат, аспартат, органические фосфаты, сульфаты и др.)

Таким образов, на мембране формируется калиево-равновесный потенциал, т.к. уравновешиваются силы диффузии (выход K из клетки по градиенту концентрации) и электростатического взаимодействия (отталкивание выходящих ионов K положительным зарядом на наружной поверхности мембраны).

Калий является основным ионом, обеспечивающим формирование МП (ПП), что подтверждается формулой Нернста. По ней можно, зная концентрацию онов калия внутри и снаружи клетки, подсчитать величину ПП.

Общая физиология возбудимых тканей

Биологические реакции. Живые организмы и все их клетки обладают раздражимостью, т.е. способностью отвечать на воздействия внешней среды или нарушения их состояния изменением своей структуры или функции, что неразрывно связано с количественными и качественными изменениями обмена веществ и энергии. Изменения структуры и функций организма и его клеток в ответ на различные воздействия называют биологическими реакциями, а сами воздействия, их вызывающие — раздражителями, или стимулами.

Понятие биологической реакции включает все виды ответной деятельности организма, его клеток и органов на различные воздействия. Реакции клеток проявляются в изменении их формы, структуры, их роста и процесса деления, в образовании в них различных химических соединений, преобразовании потенциальной энергии в кинетическую (электрическую, механическую, тепловую, световую), совершении той или иной работы (перемещении в пространстве, выделении тех или иных веществ, работе по концентрированию в клетке определенных электролитов и т.п). Еще более разнообразны реакции целостного организма, в особенности — сложные формы поведения. В процессе их осуществления меняется деятельность многих органов и бесчисленного множества клеток, ибо организм всегда реагирует на различные воздействия как единое целое, как единая сложная система.

Раздражители. Раздражителем живой клетки или организма как целого может оказаться любое изменение внешней среды или внутреннего состояния организма, если оно достаточно велико, возникло достаточно быстро, и продолжается достаточно долго.

Все бесконечное многообразие возможных раздражителей можно разделить на 3 группы: физические, физико-химические и химические. К числу физических раздражителей относятся температурные, механические (удар, укол, давление, перемещение, ускорение и т.п.), электрические, световые. Физико-химические раздражители представлены изменениями осмотического давления, активной реакции среды, электролитного состава, коллоидального состояния. К числу химических раздражителей относится множество веществ, имеющих различный состав и свойства, и способных изменить обмен веществ клеток (вещества пищи, лекарства, яды, гормоны, ферменты, метаболиты и т.п.).

Раздражителями клеток, вызывающими их деятельность, имеющими особо важное значение в жизненных процессах, являются нервные импульсы. Будучи естественными, т.е. возникающими в самом организме, электрохимическими раздражителями клеток, нервные импульсы, поступая по нервным волокнам от нервных окончаний в ЦНС или приходя от нее к периферическим органам, вызывают направленные изменения их состояния и деятельности.

Все раздражители по месту возникновения делят на внешние (экстеро-) и внутренние (интеро-) раздражители, а по физиологическому значению — на адекватные и неадекватные. Адекватными называют те раздражители, которые действуют на данную биологическую структуру в естественных условиях, к восприятию которых она специально приспособлена эволюцией и чувствительность к которым у нее обычно чрезвычайно велика (глаз — свет, ухо — звук и т.д.). Неадекватными называются те раздражители, для восприятия которых данная клетка или орган специально не приспособлен, но которые в определенных условиях могут вызвать изменения структуры или функции (мышца — может сократиться при ударе, быстром согревании, воздействии электротока, внезапном растяжении, действии кислоты и т.п.).

Возбудимость. Клетки нервной, мышечной и железистой тканей специально приспособлены к осуществлению быстрых реакций на раздражение (возбуждаться). Клетки этих тканей называют возбудимыми, а их способность отвечать на различные раздражения возбуждением — возбудимостью. Возбудимость — это свойство клеточной мембраны отвечать на действие раздражающего (возбуждающего) фактора изменением проницаемости и своего электрического состояния. Это явление и носит название возбуждение. Возбуждение представляет собою сложную биологическую реакцию, проявляющуюся в совокупности физических, физико химических и функциональных изменений. Обязательным признаком возбуждения является изменение электрического состояния поверхностной клеточной мембраны, (изменение ее мембранного потенциала, МП, и генерация распространяющегося потенциала действия, ПД). Возникнув в одной клетке или в одном ее участке, возбуждение распространяется на другие участки той же клетки или на другие клетки.

Ответ живой клетки на раздражение в форме ли возбуждения и связанной с ним электрической реакции, или в форме сокращения или секреции, происходит всегда после некоторого скрытого, или латентного периода. Так называют период времени между началом действия раздражителя и реакцией ткани на его действие. В течение латентного периода должны пройти изменения состояния ткани, необходимые для того, чтобы проявилась реакция. Латентный период возбудимых тканей короче, чем у невозбудимых, а латентный период электрической реакции ткани короче, чем мышечного сокращения и тем более секреторной реакции.

История открытия электрических явления в тканях.

В 1786 г. итальянский врач и физиолог Гальвани, развесив для просушки лягушачьи лапки на балконе заметил, что когда раскачиваемая ветром лапка соприкасается с металлической решеткой балкона, то возникает ее сокращение. Гальвани сделал вывод, что если между нервом и мышцей устанавливается замыкание посредством металлического проводника, и при этом мышца сокращается, то это есть доказательство проявления «животного электричества». Он считал, что нерв и мышца заряжены противоположно.

Однако, физик Вольта показал ошибочность вывода Гальвани путем проведения такого опыта: он подметил, что перила балкона были медные, а крючки, на которых висели лапки — железные. Попробовав приложить к лапке пинцет, одна ножка которого была сделана из меди, а другая из цинка или из железа, Вольта получил сокращение мышцы. Следовательно, заключил он, мышцы сокращаются не потому, что выделяется «животное электричество», а потому, что между двумя металлами, соприкасающимися с электролитом, течет ток, который и раздражает нервы лапки лягушки.

Не соглашаясь с Вольта, Гальвани поставил второй опыт. Он заключался в без металлическом сокращении мышцы. Сокращение достигалось путем накидывания нерва на отпрепарированную мышцу с помощью стеклянных инструментов. Однако оказалось, что сокращение удавалось получить только тогда, когда мышца была повреждена, а если мышца была отпрепарирована тщательно, без повреждения ее поверхности, то при таком опыте сокращения не возникало. Позднее немецкий физиолог Герман показал, что если к неповрежденной мышце приложить электроды гальванометра, то никакой разности потенциалов увидеть не удается. Но если на мышцу или нерв нанести повреждение, надрез, и погрузить в этот надрез один из электродов, то стрелка гальванометра отклоняется, что показывает, что между поврежденными и неповрежденными участками живой мышцы возникает электрический ток, причем поврежденный участок несет отрицательный заряд. Этот ток был назван током повреждения, или током покоя.

В 1837 г. Маттеучи показал, что ток покоя скелетной мышцы при ее сокращении уменьшается. Маттеучи проделал и еще один опыт. Он брал два нервно-мышечных препарата и нерв 2-го набрасывал на мышцу 1-го. При этом он раздражал нерв 1-го препарата, заставляя мышцу сокращаться. Оказалось, что и 2-я мышца при этом начинала сокращаться. Объяснить это влиянием на нерв тока покоя нельзя, так как сокращение второй мышцы происходило лишь при возбуждении первой. Еще демонстративнее этот опыт, если вместо первой мышцы взять работающее сердце лягушки. При набрасывании стеклянным крючком нерва нервно-мышечного препарата на сердце лягушки мышца лапки начинает сокращаться в ритме работающего сердца. Причина этого явления была обнаружена позже.

В 1850 г. знаменитый французский исследователь Дюбуа-Реймон, раздражая седалищный нерв лягушки, обнаружил, что вслед за раздражением по нерву пробегает волна электрического тока. В 1868 г. Герман показал, что причина этого в том, что возникающий при раздражении электрический ток достигает соседнего участка, возбуждает его, затем достигает следующего участка и путем таких контактов волна возбуждения бежит по нерву, как огонь по бикфордову шнуру.

Если раздражать одиночными ударами постоянного тока участок нерва, а от следующего участка отводить двумя электродами ток на гальванометр или на трубку катодного осциллографа, то вначале, в момент нанесения раздражения, никаких отклонений не регистрируется. так как под обоими отводящими электродами одинаковый потенциал. Через некоторое время, распространяясь. возбуждение достигает первого отводящего электрода и тогда гальванометр регистрирует разность потенциалов в виде отрицательного колебания — стрелка отклоняется влево (на осциллографе — вниз). Когда волна возбуждения — оказывается между электродами, стрелка возвращается в исходное положение. Затем волна возбуждения достигает второго электрода — стрелка отклоняется вправо (луч вверх). Когда волна возбуждения уходит дальше, и луч осциллографа и стрелка гальванометра возвращаются в исходное положение.

Из этих фактов можно сделать следующие выводы:

1. В покое разность потенциалов существует только между неповрежденным и поврежденным участками ткани (ток повреждения, или ток покоя).

2. При прохождении возбуждения по нерву в нем возникает ток действия.

3. Этот ток действия не остается на месте, а распространяется.

4. Ток действия представляет собой отрицательное колебание потенциала.

Более точное изучение механизмов электрических изменений в тканях в покое и при возбуждении стало возможным с прогрессом электроизмерительной и микроэлектродной техники. Переходим теперь к рассмотрению современных данных об электрических процессах в тканях.

Потенциал покоя. Оказалось, что между наружной поверхностью клетки и ее протоплазмой в состоянии покоя существует разность потенциалов порядка 60-90 мв., причем поверхность клетки заряжена электроположительно по отношению к протоплазме. Эта разность потенциала называется мембранным потенциалом, или потенциалом покоя. Точное его измерение возможно только с помощью внутриклеточных микроэлектродов.

Согласно мембранно-ионной теории Ходжкина-Хаксли, биоэлектрические потенциалы обусловлены неодинаковой концентрацией ионов K+,Na+,Cl- внутри и вне клетки, и различной проницаемостью для них поверхностной мембраны.

На основании данных электронной микроскопии, химического анализа и электрофизиологических исследований предполагают, что мембрана состоит из двойного слоя молекул фосфолипидов, покрытого изнутри слоем белковых молекул, а снаружи — слоем молекул белка и мукополисахаридов. Допускают, что в клеточной мембране имеются тончайшие каналы (поры) диаметром в несколько ангстрем. Через эти каналы молекулы воды и других веществ, а также ионы, имеющие соответствующий размеру пор диаметр, входят в клетку и покидают ее. На структурных элементах мембраны фиксируются различные заряженные группы, что придает стенкам каналов тот или иной заряд. Так, наличие в мембране нервных волокон диссоциированных фосфатных и карбоксильных групп является причиной того, что она (мембрана) значительно менее проницаема для анионов, чем для катионов.

Проницаемость мембраны для различных катионов также неодинакова и закономерно изменяется при различных функциональных состояниях ткани. В покое мембрана нервных волокон примерно в 25 раз более проницаема для ионов К, чем для ионов Na, а при возбуждении натриевая проницаемость примерно в 20 раз превышает калиевую.

Кроме проницаемости, большое значение для возникновения мембранного потенциала имеет градиент концентрации ионов по обе стороны мембраны. Показано, что цитоплазма нервных и мышечных клеток содержит в 30-59 раз больше ионов К+ (500 мэкв/л против 10 мэкв/л), но в 8-10 раз меньше ионов Na+ (35 мэкв/л против 350 мэкв/л) и в 50 раз меньше ионов Cl-, чем внеклеточная жидкость (см. табл.). Величина потенциала покоя нервных волокон и клеток определяется соотношением положительно заряженных ионов К+, диффундирующих в единицу времени из клетки наружу по градиенту концентрации, и положительно заряженных ионов Na+, диффундирующих по градиенту концентрации в обратном направлении. Так, в модельных опытах на аксоне кальмара при том градиенте концентрации К+, который имеет место в нервном волокне, величина тока К+ составляет -120 мв. Если же смоделировать в таком опыте только натриевый градиент, то величина тока Na+ составляет +30 мв. Реально измеряемый мембранный потенциал нерва равен сумме этих двух противоположно направленных токов, т.е. -90мв.

Несмотря на то, что скорость диффузии ионов Na+ и К+ через мембрану в покое мала, разность их концентрации вне клетки и внутри нее должна была бы в конечном итоге полностью выровняться, если бы в клетке не существовало специального механизма, который обеспечивает активное выделение («выкачивание») из протоплазмы проникающих в нее ионов Na+ и введение («нагнетание») ионов К+. Этот механизм получил образное название натрий калиевого насоса.

Для того, чтобы сохранялась ионная асимметрия, Na-К-насос должен совершать определенную работу против градиента концентрации ионов. Непосредственным источником энергии для работы насоса является расщепление АТФ, которое происходит под влиянием АТФ-азы, локализованной в мембране и активируемой ионами Na+ и К+ (т.н. Na-К-зависимая АТФ-аза). Торможение активности этого фермента приводит к нарушению работы насоса. В результате протоплазма обогащается Na+ и теряет К+. Прямым следствием этого является снижение или даже полное исчезновение МП (потенциала покоя, или мембранного потенциала).

Деполяризация мембраны возникает потому, что в силу градиента концентрации К+ выходит наружу, но из-за того, что ионы CL-, которые не в состоянии пройти через мембрану, электростатически удерживают положительные ионы, в пограничном слое создается избыток К+, и между наружной и внутренней поверхностями мембраны, заряженными соответственно положительно и отрицательно, возникает разность потенциалов величиной около -90 мв. Мембрана в покое постоянно деполяризована, так как в результате работы Na-K-насоса поддерживается нужный для этого градиент концентрации ионов.

Потенциал действия. Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя (например, толчка электрического тока), в этом участке возникает возбуждение, одним из наиболее важных проявлений которого служит быстрое колебание МП, называемое потенциалом действия (ПД)

При внутриклеточном отведении можно обнаружить, что поверхность возбужденного участка на очень короткий интервал, измеряемый тысячными долями секунды, становится заряженным электро-отрицательно по отношению к соседнему, покоящемуся участку, т.е. при возбуждении происходит т.н. «перезарядка мембраны». Точные измерения показали, что амплитуда ПД на 30-50 мв превышает величину МП. Причина этого состоит в том, что при возбуждении происходит не просто исчезновение ПП, а возникает разность потенциалов обратного знака, в результате чего наружная поверхность мембраны становится заряженной отрицательно по отношению у ее внутренней стороне.

В ПД принято различать его пик (т.н. спайк — spike) и следовые потенциалы. Пик ПД имеет восходящую и нисходящую фазы. Перед восходящей фазой регистрируется более или менее выраженный т.н. местный потенциал , или локальный ответ. Поскольку во время восходящей фазы исчезает исходная поляризация мембраны, ее называют фазой деполяризации; соответственно нисходящую фазу, в течение которой поляризация мембраны возвращается к исходному уровню, называется фазой реполяризации. Продолжительность пика ПД в нервных и скелетных мышечных волокнах варьирует в пределах 0,4-5,0 мсек. При этом фаза реполяризации всегда продолжительнее.

Кроме пика, в ПД различают два следовых потенциала — следовую деполяризацию (следовой отрицательный потенциал) и следовую гиперполяризацию (следовой положительный потенциал. Амплитуда этих потенциалов не превышает нескольких милливольт, а длительность варьирует от нескольких десятков до сотен миллисекунд. Следовые потенциалы связаны с восстановительными процессами, развивающимися в мышцах и нерве после окончания возбуждения.

Причиной возникновения ПД является изменение ионной проницаемости мембраны. В состоянии покоя, как уже говорилось, проницаемость мембраны для К+ превышает натриевую проницаемость. Вследствие этого поток положительно заряженных ионов из протоплазмы наружу превышает противоположный поток Na+. Поэтому мембрана в покое снаружи заряжена положительно.

При действии на клетку раздражителя проницаемость мембраны для ионов Na+ резко повышается, и в конечном итоге становится примерно в 20 раз больше проницаемости для К+ Поэтому поток ионов Na+ в клетку начинает значительно превышать направленный наружу поток К+. Ток Na+ достигает величины +150 мв. Одновременно несколько уменьшается выход К+ из клетки. Все это приводит к извращению (реверсии) МП, и наружная поверхность мембраны становится заряженной электро отрицательно по отношению к внутренней поверхности. Указанный сдвиг и регистрируется в виде восходящей ветви пика ПД (фаза деполяризации).

Повышение проницаемости мембраны для ионов Na+ продолжается в нервных клетках очень короткое время. Связано оно с кратковременным открытием т.н. Na+-каналов (точнее, заслонок М в этих каналах), которое затем сменяется срочным закрытием Na+-пор с помощью т.н. Н-ворот. Этот процесс называется натриевой инактивацией. В результате поток Na в клетку прекращается.

Наличие специальных Na- и К- каналов и сложного механизма запирания и открытия ворот изучено биофизиками достаточно хорошо. Показано, что существуют избирательные механизмы, регулирующие те или иные каналы. Например, яд тетродотоксин блокирует только Na-поры, а тетраэтиламмоний — только К-поры. Показано, что у некоторых клеток возникновение возбуждения связано в изменением проницаемости мембраны для Са++, в других — для Mg+. Исследования механизмов изменения проницаемости мембран продолжаются.

В результате Na-инактивации и одновременного увеличения К- проницаемости происходит усиленный выход положительных ионов К+ из протоплазмы во внешний раствор. В итоге этих двух процессов происходит восстановление поляризованного состояния мембраны (реполяризация) , и наружная ее поверхность вновь приобретает положительный заряд. В дальнейшем происходят процессы восстановления нормального ионного состава клетки и необходимого градиента концентрации ионов за счет активизации деятельности Na-К-насоса.

Таким образом, в живой клетке существуют два различных типа движения ионов через мембрану. Один из них осуществляется по градиенту концентрации ионов и не требует затраты энергии, поэтому его называют пассивным транспортом. Он ответственен за возникновение МП и ПД и ведет в конечном итоге к выравниванию концентраций ионов по обе стороны клеточной мембраны. Второй тип движения ионов через мембрану, осуществляющийся против концентрационного градиента, состоит в «выкачивании» ионов Na+ из протоплазмы и «нагнетании» ионов К+ внутрь клетки. Этот тип ионного транспорта возможет лишь при условии затраты энергии — это активный транспорт. Он является результатом работы специальных ферментных систем (т.н. насосов), и благодаря ему восстанавливается исходная разность концентраций, необходимая для поддержания МП.

Условия возникновения возбуждения. Для возникновения ПД необходимо, чтобы под влиянием какого-либо раздражителя произошло повышение ионной проницаемости мембраны возбудимой клетки. Однако, возбуждение возможно лишь при условии, если действующий на мембрану агент имеет некоторую минимальную (пороговую) величину, способную изменить мембранный потенциал (МП, или Ео ) до некоторого критического уровня (Ек, критический уровень деполяризации). Стимулы, сила которых ниже пороговой величины, называются подпороговыми, выше — надпороговыми. Показано, что пороговая сила, необходимая для возникновения возбуждения при внутриклеточном микроэлектроде равна 10 -7 — 10-9 А.

Таким образом, главным условием для возникновения ПД является следующее: мембранный потенциал должен стать равным или меньше критического уровня деполяризации ( Ео <= Eк)

Причины этого явления нам станут ясны позже, после выяснения некоторых механизмов действия постоянного электротока на возбудимые ткани.

В лабораторных условиях и при проведении некоторых клинических исследований для раздражения нервов и мышц применяют электрические стимулы, которые легко дозировать как по амплитуде и длительности, так и по форме, имитируя естественные нервные импульсы. Механизм раздражающего действия тока на ткань в принципе одинаков при всех видах стимулов, максимально приближается к механизму действия самих нервных импульсов, однако в наиболее отчетливой форме эти механизмы выявляются при использовании постоянного тока.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]